Menoufyia University
Faculty of Engineering
Shebin El-Kom
Final Exam.

Academic Year: 2013 - 2014

Date: 14/06/2014

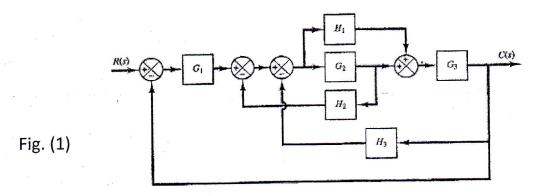
Dept: Production Engineering

Year: Fourth

Subject: Automatic Control

Code: PRE

·Time Allowed: 3 hours


Total Marks: 90

This exam measures the ILOs: a₁, a₂, a₃, b₁,b₂,b₃,c₁,c₂,c₃

Question (1)

(15 +10 Marks)

a- Find the overall transfer function for the following control system:

b- Using Mason's rule Find the overall transfer function for a control system has the following signal flow graph.

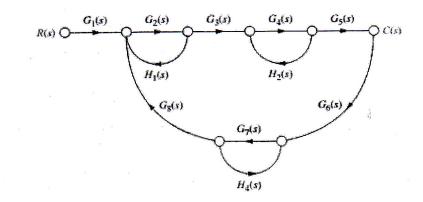
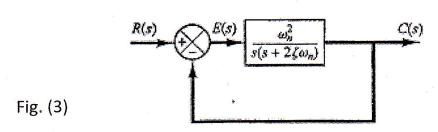


Fig. (2)


Question (2)

(10 +10 Marks)

a- For the system shown in Fig.(), considering $\zeta = 0.6$, $\omega_n = 5$ rad/ sec and the system is subjected to a unit- step input.

Find:

The rise time, peak time, maximum overshoot and settling time.

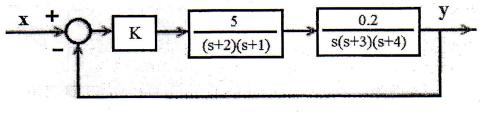
b- Given the following differential equation, solve for y(t) if all initial conditions are zero. Use the Laplace transform

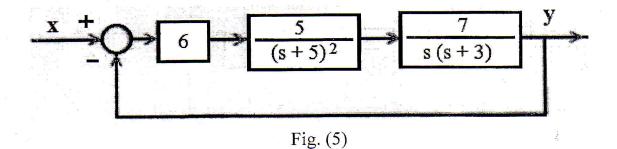
$$\frac{d^2y}{dt^2} + 12\frac{dy}{dt} + 32y = 32u(t)$$

Question (3)

(20 Marks)

Find out the value of the controller constant (K) which makes the closed-loop control system, shown in Fig. (4), critically stable.




Fig. (4)

Question (4)

(25 Marks)

Use the closed-loop control system shown in Fig. (5) to:

- 1. State the stability condition of the given system.
- 2. Find out the values of the Gain Margin (GM) and Phase Margin (PM).

