

Final Exam	. Term	Code	P432	Percentage %	60
Term No.	. 1	Faculty	Science	No. of Papers	5
Year	2018/2019	Department	Physics	Date of Exam	2/1/2019
Соштѕе	Laser and Maser	Total Marks	120	Allowed Time	2 hours

ي المجابة بآخر صفحة من أوراق الأسئلة في الجداول بوضع دائرة صغيرة مظللة [•] أمام رمز الأجابة الضحيحة، وتسلم حسيح أوراق الأسئلة مع ورقة الاجابة.

Q-1: Choose the correct answer in the following sentences:	(2 Marks for each points
1. Laser light is intense because (a) it has very less number of photons that in photons	ase (b) it has very large
number of Photons that are in phase (c) none of them	
2. The population inversion in preparing laser beam can be achieved (a) when	one of the excited states is
more populated than the ground state (b) when one of the excited state	e is less populated than the
ground state (c) none of them	
3. In lasing action, the light amplification is done due to	
(a) stimulated emission (b) spontaneous emission (c) absorption	
4. Laser beam is composed of waves at same wavelength, with very small	and start at the same time.
(a) intensity (b) divergence (c) coherence	
5. Once the active medium is excited, the first photons of light are produced by	a physical process which is
called ·(a) spontaneous absorption (b) stimulated emission	(c) None of them
6. The population inversion process is observed due to the existence of	
(a) excited state (b) metastable state (c) ground state	
7. The power density of laser sources is (a) higher than (b) lower than	(c) equal to that of
conventional light sources.	
8. Maser is (a) not amplified electromagnetic waves at microwave and radio fre	•
electromagnetic waves (c) coherent electromagnetic waves produced through	amplification by stimulated
emission at non-visible wavelengths.	
9. A LASER is a MASER with higher frequency photons in the ultraviole	t or visible light spectrum
(a) true (b) false	
10. When the transition probability from higher energy level to a lower one is	•
higher energy level is (a) high (b) low (c) cons	
11. In reality, every spectral line of laser has a finite (a) wavelength (b)) intensity (c) emission
width around its central wavelength (λ_0).	
121 (1110)	fferent optical density.
(a) its speed and frequency change (b) its speed and waveler	
(c) its frequency and wavelength change (d) its speed. frequency.	and wavelength change.

A SECOND	occurs only at wavelengths in which the materials have a emission:
notific	simulated (b) phosphorescence (c) None of them
4	ecording to Boltzmann equation, for atoms in thermodynamic equilibrium with their surrounding, the
	higher the temperature, thethe population number. (a) medium (b) higher (c) lower
" 155	. For fixed thickness of a material with incident wavelengths, the transmission changes with
	the absorption coefficient (α). (a) constant (b) different (c) none of them
16.	A Helium-Neon laser of power 1 mW and the laser beam diameter at the laser output is 2 mm. The power density
	at a distance of 2 m is 8 mw/cm ² . Then its divergence is mrad. (a) 1 (b) 10 (c) 0.1
17.	In a phosphorescent material, after the excitation stops, the photons are emitted by
	(a) spontaneous emission (b) stimulated emission (c) fluorescence process.
18.	The (a) stimulated emission (b) spontaneous emission (c) phosphorescence
	is independent of external influence.
19.	For laser production, after the first photons of light are produced, which process is responsible for
	amplification of the light? (a) spontaneous emission (b) stimulated absorption (c) None of them
20.	The lower laser energy level (E ₂) in the four level lasers has low population and life time.
	(a) short (b) long (c) medium
21.	Because of the feedback mechanism, only photons which move between the mirrors remain in the active
	medium, which give the of the output beam.
	(a) directionality (b) monochromaticity (c) coherence
22.	(c) spontaneous emission
	process, the emission stops the moment the excitation stops.
23.	For new laser materials, the energy levels are examined spectroscopically to find
	(a) fluorescence (b) stimulated emission (c) phosphorescence.
	The ballast resistor is used to limit the current through the tube when the tube gas resistance
	(a) remains constant (b) increases (c) decreases
	Pumping mechanism in diode laser is (a) electric resistance (b) electric current (c) chemical reaction.
	A low pressure is commonly used in gas laser to obtain spectral width.
	(a) narrow (b) broad (c) wavelength
	The role of the Helium gas in He-Ne laser is to (a) increase (b) decrease (c) limit
	the efficiency of the lasing process.
28.	Electromagnetic radiation has, in addition to its wave nature, some aspects of "particle like behavior"
	which is called phonons. (a) true (b) false
	The light from a laser source is monochromatic because all the photons
•	(a) are in phase (b) have same amplitude (c) have same energy (d) are in the same direction

30.	Optical pumping is not generally an efficient method for gas lasers, because gas atoms absorb a	
	portion of the light in the excitation process. (a) small (b) large (c) medium	
31.	To find the beam divergence angle, when the measurement is done the laser source, it is	
	accurate enough to measure the spot diameter and divide it by the distance of the illuminated spot from	
	the laser source. (a) at (b) near (c) very far from	
32.	Gas lasers use (a) electrical discharge (b) electrical resistance (c) chemical reaction	
	through the gas medium as excitation or pumping mechanism.	
33.	The laser (a) intensity (b) energy (c) power measured over a defined unit	
	area is called power density.	
34.	The visible spectrum wavelength difference $\Delta\lambda$ is given by $\Delta\lambda$ = 0.7-0.4 = 0.3 μm , then the frequency	
	width Δv is given by $\Delta v =$ (a) $c/0.4 - c/0.7$ (b) $c/0.3$ (c) $c/0.7$	
35.	When the lifetime of the metastable state is high, the population of atoms at this level increases and hence	
	the probability is that an incoming photon will stimulate an excited atom to return to a lower	
	state. (a) high (b) low (c) none of them.	
36.	The relative population (N_2/N_1) depends on (a) the difference between (b) the values of	
	(c) none of the energy levels E_1 and E_2 .	
37.	Monochromaticity means (a) two wavelengths (b) one wavelength (c) three wavelengths	
38.	This angular spreading of a laser beam iscompared to other sources of electromagnetic	
	radiation (a) very small (b) very large (c) none of them	
	Pumping source preferred for gaseous lasers is (a) optical (b) electrical (c) X-Ray pumping.	
40.	A phosphorescence process is a process in which absorption is the emission process.	
	(a) equal to (b) longer than (c) shorter than	
41.	. Every material is transparent differently to different wavelengths, so the absorption coefficient (α) of a	1
	material depends on	
• •	the material type only (b) the material type and wavelength (c) wavelength only.	
	. Coherence depends on (a) monochromaticity (b) directionality (c) none of them	
43.	. In fluorescence process, the absorbed wavelengths by the atom are the emitted wavelengths	١.
	(a) equal to (b) shorter than (c) longer than	_
44	I. In case of the four level lasers, the population inversion can be created with pumping	٠
	atoms to the appet laser levels (27 and 27 a	٠.
45	5. The negative sign in the rate equation of spontaneous emission means that the rate at which the excite	
	atom population $N_2(t)$ decays from the higher energy level (E_2) to the lower energy level (E_1) increase	72
	with increasing (a) $N_2(t)$ (b) $N_1(t)$ (c) dN_2/dt	,,
46	6. The absorption rate equation depends on the number of atoms in the lower energy level and the energy	د.
	density of radiation n (t) is not included. (a) true (b) false	

£

59. The ratio of the population numbers (N_1/N_2) for the two energy levels E_2 and E_1 when the material is at

60. Light has wavelength 400 nm in a vacuum. It passes into glass, which has an index of

 $K = 1.38*10^{-23} \text{ J/K}$

refraction of 1.5. What is the frequency of the light inside the glass?

b) 5.0×10¹⁴ Hz

(b) $10^9/4$, 2.48 μm

 $h = 6.625 * 10^{-34} J.s.$

a) $3.3 \times 10^{14} \text{ Hz}$

(a) $4 * 10^{-9}$, 2.48 μ m

 $e = 1.6 * 10^{-19} C$

(c) $10^9/4$, 5.5 µm

c) 3.3×10^5 Hz

	а	b	С	d
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17 -				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29	1			
30			-	

	a	b	c	d) -
31					
32					}
33					
34					
35					
36					
37					
38					
39					
40			+ -		1
41					
42					
43	1	<u> </u>			
44					
45					
46					
47					
48			_		
49					
50					
51					
52					
53					
54		_		_	
55			-	_	
56				_	
57	_			_	
58			-		
59	_				
60					

₹',