Mansoura University		Mecha Total I	nical Power Engineering De Marks :70	-	Faculty of Engineering	69965
Course title: Fluid	d Mecha	inics	Course Code: MPE 5126	1 st year Pro	od. Engineering	(6)-6
Date: June, 2014 (2 nd term)			Allowed time : 3 hrs	3 hrs No. of Pages: 2		
Remarks: (Answer the following questions and assume any missing data)						

Remarks: (Answer the following questions, and assume any missing data)

Question (1) [15Marks]

1-(a) What is meant by the following terms?

[5 Marks]

- Fluid - Non-Newtonian fluid - Incompressible fluid - Energy line - Steady flow

<u>1- (b) Put ($\sqrt{}$) or (x), and CORRECT the wrong one</u>

[5 Marks]

- 1. () Micro- manometer is used to measure high difference pressure.
- 2. () Newton's low of viscosity is applied on Newtonian and Non-Newtonian fluids
- 3. () In turbulent flow stream lines moves in a parallel lines.
- 4. () Continuity equation is deduced based on the law of energy conservation.
- 5. () The friction coefficient of laminar flow in pipes increases as the Reynolds number increases.

1-(c) Starting from Energy equation, deduce the relation that is used to calculate the volume [5 Marks] flow rate of the venturi flow meter.

Question (2) [25 Marks]

2-(a) A solid circular cylinder has a diameter of 100 mm and length of 300 mm slides inside a vertical smooth pipe of 100.5 mm diameter. The space between the cylinder and the pipe is lubricated with an oil film has a dynamic viscosity of 0.15 N.m/s². Assuming linear variations of velocity between the cylinder and pipe. Draw the velocity distribution and calculate the velocity of the cylinder if it has a weight of 50 N. [10 Marks]

<u>2-(b)</u> The arrangement system shown in figure is to measure the pressure at point A in a water flow. If the pressure at B is 87 kPa, estimate the pressure at A, in kPa. Take the specific weights of SEA oil and mercury are 0.87 and 13.6 respectively.[10 Marks]

[5 Marks] **2-(c)** If the flow velocity is given by the following equations: (k is constant) u = -k vv = k x

- a) Obtain the streamline equation for this flow.
- b) Is this flow (one or two dimensional flow, steady or unsteady flow, and rotational or irrotational flow)?

Question (3) [15 Marks]

<u>3-(a)</u> An open tank has a vertical partition and on one side contains gasoline with a density of 700 kg/m³ at a depth of 4 m, as shown in figure. A rectangular gate that is 4 m high and 2 m wide and hinged at one end is located in the partition. Water is slowly added to the empty side of the tank. At what depth, *h*, will the gate start to open? **[8 Marks]**

<u>3-(b)</u> Water flows steadily through a closed tank, as in Figure. At section 1, $D_1 = 6$ cm and the volume flow is 100 m³/h. At section 2, $D_2 = 5$ cm and the average velocity is 8 m/s. If $D_3 = 4$ cm, what is (a) Q_3 in m³/h and (b) average V₃ in m/s? [5 Marks]

Question (4) [20 Marks]

<u>4-(a)</u> The water jet shown in Figure strikes normal to a fixed plate. Neglect gravity and friction, and compute the force F in Newtons required to hold the plate fixed. **[10 Marks]**

4-(b) The industrial scrubber B shown in figure consumes water (μ =10⁻³ Pa.s) at a rate of 0.1 m³/s if the pipe is 150 mm diameter determine the necessary tank pressure p₁. Neglect Air elevation in the tank and take ϵ =0.046 mm. [10 Marks]

تمنياتى بالتوفيق،،،

د. وليد العوضي