| Mansoura <br> University | Mechanical Power Engineering Department <br> Total Marks :70 | Faculty of <br> Engineering |
| :--- | :--- | :--- | :--- |
| Course title: Fluid Mechanics Course Code: MPE 5126 $1^{\text {st }}$ year Prod. Engineering <br> Date: June, 2014 (2 $2^{\text {nd }}$ term $)$ Allowed time :3 hrs No. of Pages: 2 |  |  |

## Remarks: (Answer the following questions, and assume any missing data)

## Question (1) [15Marks]

## 1-(a) What is meant by the following terms?

[5 Marks]

- Fluid - Non-Newtonian fluid - Incompressible fluid - Energy line -Steady flow


## 1-(b) Put ( $\sqrt{ }$ ) or ( $x$ ), and CORRECT the wrong one

1. ( ) Micro- manometer is used to measure high difference pressure.
2. ( ) Newton's low of viscosity is applied on Newtonian and Non- Newtonian fluids
3. ( ) In turbulent flow stream lines moves in a parallel lines.
4. ( ) Continuity equation is deduced based on the law of energy conservation.
5. ( ) The friction coefficient of laminar flow in pipes increases as the Reynolds number increases.

1-(c) Starting from Energy equation, deduce the relation that is used to calculate the volume flow rate of the venturi flow meter.
[5 Marks]

## Question (2) [25 Marks]

2-(a) A solid circular cylinder has a diameter of 100 mm and length of 300 mm slides inside a vertical smooth pipe of 100.5 mm diameter. The space between the cylinder and the pipe is lubricated with an oil film has a dynamic viscosity of $0.15 \mathrm{~N} . \mathrm{m} / \mathrm{s}^{2}$. Assuming linear variations of velocity between the cylinder and pipe. Draw the velocity distribution and calculate the velocity of the cylinder if it
 has a weight of 50 N . [10 Marks]

2-(b) The arrangement system shown in figure is to measure the pressure at point A in a water flow. If the pressure at B is 87 kPa , estimate the pressure at A, in kPa . Take the specific weights of SEA oil and mercury are 0.87 and 13.6 respectively.[10 Marks]


2-(c) If the flow velocity is given by the following equations:
[5 Marks]

$$
u=-k y \quad v=k x \quad(k \text { is constant })
$$

a) Obtain the streamline equation for this flow.
b) Is this flow (one or two dimensional flow, steady or unsteady flow, and rotational or irrotational flow)?

## Question (3) [15 Marks]

3-(a) An open tank has a vertical partition and on one side contains gasoline with a density of 700 $\mathrm{kg} / \mathrm{m}^{3}$ at a depth of 4 m , as shown in figure. A rectangular gate that is 4 m high and 2 m wide and hinged at one end is located in the partition. Water is slowly added to the empty side of the tank. At what depth, $h$, will the gate start to open? [8 Marks]


3-(b) Water flows steadily through a closed tank, as in Figure. At section 1, $\mathrm{D}_{1}=6 \mathrm{~cm}$ and the volume flow is $100 \mathrm{~m}^{3} / \mathrm{h}$. At section $2, \mathrm{D}_{2}=5 \mathrm{~cm}$ and the average velocity is $8 \mathrm{~m} / \mathrm{s}$. If $\mathrm{D}_{3}=4 \mathrm{~cm}$, what is (a) $\mathrm{Q}_{3}$ in $\mathrm{m}^{3} / \mathrm{h}$ and (b) average $\mathrm{V}_{3}$ in $\mathrm{m} / \mathrm{s}$ ? [5 Marks]


## Question (4) [20 Marks]

4-(a) The water jet shown in Figure strikes normal to a fixed plate. Neglect gravity and friction, and compute the force $F$ in Newtons required to hold the plate fixed. [10 Marks]


4-(b) The industrial scrubber B shown in figure consumes water ( $\mu=10^{-3} \mathrm{~Pa} . \mathrm{s}$ ) at a rate of $0.1 \mathrm{~m}^{3} / \mathrm{s}$ if the pipe is 150 mm diameter determine the necessary tank pressure $\mathrm{p}_{1}$. Neglect Air elevation in the tank and take $\varepsilon=0.046 \mathrm{~mm}$.
[10 Marks]


