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ABSTRACT s

For adequate assessment of transient response in transmission systems,
the interest in the prohlem of travelling waves has grown rapidly over the
last two decades. The paper illustrates the important role which the eigen-
value theory playe in the solution of wave problems in multiconductor lines
with the principal advantage of setting out the results in a form which is
particularly suitable for numerical processing. This contribution also dis-
cusges some aspects of the eigenvalue formulation of the multiconductor wave
equations and gives a clearer interpretation of the mechanism of propagation.

T, INTRODUCTION:

The aclution of travelling wave problems in multiconductor lines has been
attempted by some authors!-3, Although it would be feasible to solve the equa-
tions by an elimination procees, this would involve immense practical diffic-
ulties in computation. To the author's knowledge, this has not been attempted
in practice except in cases where great simplifications have been made to the
equations defining the line parameters.

On the assumption that propagation is by means of plane waves only, the
variables, when reduced to three only®, may be separated so that it is neces-
sary to slove a second order partial differential equation defined by the two
space variables at right angles to the direction of propagation. Caraon® for-
mulated a solution for this problem and expressed the results in terms of an
impedance and admittance matrix per unit length of the line, There were as
many equations as conductors in the system and the main difficulty in obtain-
ing a solution for this set of equations was due to its fast numerical complex,

48 digital computers became generally available ,interest in the sclution
of multiconductor wave problems was simulated., Adams® was the first to inter-
duce the use of matrix algebra in the analysis of asymmetrical systems of
conductors, The results were however of limited accuracy because zerpconductor
resistances were assumed, This assumption was eliminated in other workls , and
in 1963 Uedepoh11 presented a general solution for the problem using the con-

cept of eigenvalues and elgenvector. His approach, however, w ~lax and
a simpler approach using the eigenvalue theory would therefo 7
)
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The aim of this paper is to apply the method of eigenvalues and eigen-
vectors to the sclution of wave propagation problems in multiconductor
syastems using simple matrix manipulation and to clarify further the role
which the eigenvalue theory plays in the analysis. It will be shown that,
using this theory a simple physical iterpretation of the mechaniam of
propagation is obtained,

2, BASIC RELATICNSHIPS:

Congider a homogeneous multiconductor line containing n conductors and
taking an element of infinitesional length A x, when current i, flows in

the jth conductor, the voltage developed across the length A x, of the kth
conductor is

n
R & Zey 1y A

where j =1, 2, 3, .vec.a,n; k goes from 1 to n to include all conductore and
Ly 5 is the mutual impedance per unit length of the kth conductor for current
in the jth conductor, It is conventionally assumed that, power flow is fram
left to right and the reference for measuring distance is at the L,H.S., i.e,
the sendind end of the line,

Similarly, there is a shunt displacement current due to the voltage
applied to the jth conductor which is

n
i = (= T Vi * ;21 ij vj) Ax

where Yy, is the self shunt admittance of the kth conductor and Yy ; is the
mutual shunt admittance between the kth and the jth conductor, both are on a
per unit length basis,

Alternatively, for A x —» 0 the two definitive equations defining an
elemental length of the multiconductor system in matrix form ares:

av/dx

n

- 21 ceanena(1)
dI/dx = - YV cevenes(2)

where 2 and Y are the series impedance and shunt admittance matrices (each
of order n x n) respectively for the multiconductor line per unit length; V
and I are column vectors (order n) defining respectively, the voltage w.r.t.
the reference (earth) of, and the current in, any conductor in the system.

The golution of the problem is to find the n values of Vand I in {erms
of specified boundary conditions at system ends. The first stiep is to elimi-
nate one or the other set of unknowns by differentiating a second time w.r.t.
x3 viz 2 >

a“v/ax® =2y v
and 5 5
d"1/ax" = Y2 1
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At this stage it is convenient to introduce a matrix S such that

S =2¥ ceenena(3)

Since Z and Y are both bilateral, i.e. Zt= 7 and Yt= Y glving

Y2 =Y.72,=(2Y), =8, cerenes(4)
so that, in general, § # St and

a°v/ax’ = 5 v cvvreedl(5)

0°1/ax® = 5,1 eeenee(8)

3 SCLUTION USING THE EIGENVALUE TECHNIQUE:

Since S is a non-diagonal sguare matrix of order n x n, it follows that
the second order space derivative of each voltage (current) i1s a function of
all voltages (currents). As mentioned in the introduction, it is possible to
eliminate {n-1) variables and hence obtain a solution for egns.(5) and (6).
This, however, can be tedious, time consuming and, in addition, the results
obtained are neither meaningful nor are they amenable to numerical groceSSing.
On the other hand by making use of linear transformation techniques”, eqna.
(5) and {6) will be transformed to diagonal form.

Let V=Pv sewvevs (T)
where P is the transformatiom matrix; non-singular and of order n X n.
Substituting in (5) from (7), then

a%v/axl = 7

where A= P g P veerned{9)

SPV:)V -......(8)

If P is s¢ choasen that X 1s diagonal then the problem reduces to a sol-
ution of n simple second order differential equations (8) with the general
solutions-

vxk= exp( - )\% X) v.Lk + exp{ 7\4‘! X) v

Ty

for the voltage w.r.t. earth of conductor k at a distance x along the line,
The subscripts i and r refer to ‘incident’ and 'reflected' waves respectively.
The complete matrix solution is;:-

v=exp(—?\%x) v, +e)cp(}‘zé x) v vearea(10)

T

where »ss)cp(.‘!}lé x) are diagonal matrices of order n x n, and v, vy and v_ are
column vectors of order n,

Using equation {7), the complete sclution in phase quantities is, from
(10):-
- -1
4 V, + P exp( )% x) P ¥ eeovss(11)

\(==Pe;scp(->\é x) P -

where V. = PV, .
i,r :
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It is clearly seen that there are 2n unknown constante contained in the
vectora of Vj and V.. These can however be substituted for from the bounary
conditions existing on each of the n conductors at each end of the line,

From the foregoing it is evident that A is the eigenvalue9 matrix (dia-
gonal of order m x n) of S and P is the corresponding eigenvector matrix
(full of order n x n).

Similarly, using eqns.(1) and (11), the solution for the currents through
the line conductors is:

I1=2""p Xé exp(~ %% x)P“1 v. -2 p %% exp( X% x)Er1 v

. _ wesmes(12)

These two results may be simplified if use is made of matrix functions
digcussed in Appendix 10.7. Hence

V:exp(-\ux) Vi +exP(wx) vr aoc.ao(13)
and by inserting P-1P between ')ﬁ' and 'exp' in both terms of (12), we get

1=Y /exp(- ¥ x) v, - exp( ¥ x) vr47 sinvenl14)
where Y = 27y =27"p A

The surge or characteristic impedance of a line is that impedance which
relates the incident anc reflected voltages and currents at any point on the
line, This definition implies that, the surge impedance matrix of a multi-
conductor line is:

ZO=Y;1 —y Ttz W -5ty ceneea(15)

Yo is therefore the surge admittance matrix.

It may be seen that matrix equations derived thus far are identical in
form to those of a simple transmission line'. This is a great advantage
resulting from the use of eigenvalue theory.

4. PHYSICAL INTERPRETATION OF THE RESULTS:

A ueeful insight into the physical meaning of the results may be obtained
by considering the case when the incident voltage distribution is proportional
to a perticular column of P, In thils case

LT RG)

where a is a scalar and P, .y is the jth column of the eigenvectior matrix P.
Considering a semi-infinte” "lipe, in which V, = 0, and applying eqn.(13)

v

a exp(- ¥ x) P(j)

B -1
a P exp(-A° x) P P(j)

-1 N . -
Since P P = U, it follows that P P
matrix U and takes the form

forms column (j) of the unit

(3)
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that is a zero column with the exception of a unit entry in row j, Hence
B 0 ]
0
V=gP exp-}\é.x = a ex -)\éx P, .
(. j ) P( i ) (J)

0

L .-

Thia important result shows that if the incident voltage distribution is
proportional to a particular column of P, then the distribution is preserved;
the wave being subjected to a propagation factor with distance. For this
reason, columns of P are known as the voltage natural modes, or the eigen-
vectors of mode distribution vectors of voltage, with associated terms such
as modal attenuation, velocity, etc. This important feature is explained in
detail by the argument in Appendix 10,2,

S EIGENVECTCRS (OF MODE DISTRIBUTION VECTORS OF CURRENT:

Thus far a solution for the wave equations (5) and (6) has been described
starting with the differential equation of voltage. The scolution so obtained
haa been formulated in terms of voltages. The sequence may well be reversed
and the aolution formulated in terms of currents.

Conaider eqn.(6) and assuming that

1=9i rereea(16)
then

dzx/dxzaq”stQi= Ni veeeaa(17)

since ihe eigenvalues of the transposed matrix are the same as those of the
matrix itself{see Appendix 10.%). On the other hand, however, the modal
columns of voltage P and thosge of current @ are not normally the same. In

fact, the results of Appendix 10,3 shows that
-1
Q=F
Since P.'1 is always needed for purposes of formulating the matrix functions
(Section 3), the eigenvectors of current distribution Q is readily available,

Following the steps of Section 3, the solution in terms of currenta is

Z exp(-l,(/tx) Ly o= exp( }Vtx) Ir] veeana(18)

v

—
|

% exp(-v[tx) I, + exp(‘Ptx) eeeeas(19)
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-1
= Tes e 20
where Z, =Y Y@ (20)
- : -1
Also by using (14) iamto (2} we obtain Y =Y ¥ ' and
zo=u/ Y”1 '-oooa(21)

which can be seen to be the transpose of (20), It follows that both Z,and Y
are symmetric matrices even though S (or\F) in general is not.

6. EFFECT OF EARTH CONDUCTORS:

So far the solution of the wave esguations has been discussed in general
terms and it has been shown that there are as many different modes or travel-
ling waves as there are conductore in the system,

As far as the earth conductor 1s concerned, this can be assumed to be of
zerc potential at all points along the line, and hence acheiving a reduction
in the offective number of modes before a wave solution is attempted. Thia
is true for most practical cases where no resonance effect exists which would
cauge standing waves to be developed along the earth conductor 0, Following

the procedure explained in Reference 8, the earth wire is eliminated as
follows.

The basic Z and Y matrices of the multiconductor line are computed
taking into account all conductors including that (those) of earth, and then
partitioned into two sub-matrices corresponding to power and earth conductors.

M v ] [z 2 1 1T
3 p DP pe p
a-x- = =
L ve a _ Zep ZBG i L Ie J
and - I Y Y 7T [ v
d p PP pe p
Ix ==
T L Y v
L e | ep ae i L e i

and noting that Vo = Q0 and dve/dx = 0, one derives the reduced equations
as:-

av_Jax = =z' I
o PP P
dI_/édx = =Y' ¥V
p PP P
-1
h 2 =4(2_-2_2 72 and Y' =
wnere pp = (Zpp = Zpe Zoe Zep) pp = Ypp

and thereafter the asolution proceeds as before.

7. EIGENVALUES OF SYSTEMS WITH MIRROR-SYMMETRY CONFIGURATION:

In moat double-circuit linee and some single-circuit lines it is
possible to choose a plane about which conductors are located in mirror-
symmeiric pairs. Under these circumstances, it ia posaible to factorise the
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matrices (Z, Y and consequently S) in such a way that the order of the facw
torised matrices is leas than that of the original. Thia results in reducing

the order of the polynomial which is solved for the eigenvalues’ >ﬁ'}2""'\ H
where n is the number of conductors. n

For example, in double-circuit systems the conductors (n = 6) are loca-
ted in symmetirical pairs about the tower which in this case defines an axis
of symmetry. The Z and Y matrices of this system may be partitioned into two
sub-matrices with the subscripts a and b denoting the two clrcuits, and sub-
scripts 8 and m defining one circuit and the mutual to the other. Thus, appl-
ying eqns.(1) and (2)

[ VaT Fzs th ) I i
a_ - -
dx -
AR LY AR
— = - -
1a r-Ys Y Va
d = -
= =
| Ib_ LYm YS._ 5 %o J

where Zs' Zm, YB and Ym are submatrices of order #n x %n ; Va, Vb, Ia and Ib
are column vectors of order #n.

Before applying the P and @ traq;formation, the feollowing simple trane-
formations are applied; (i.e. V.= k V),

1 1 v
va A L J L 2]
and _ _
1] 1 -1 1L ]
1 I
LIb_ __1 J L 2

where 1 is a unit matrix of order 4n x #n and Viy Vo, Iy ané I, are column
vectors of order #n. These may be called ‘primitive components of voltage and
currents since they define two primitive circuits which have no mutuals bet-
ween them, This will be evident below,

. [ =1 LA
The transformed equations become (applying av/éx = x 2,k I);
v 1 1 ‘zs Z 1 -1 1,

2 m 8
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st ~: Zm) d (11
X -
& I
| 0 (ZS zm)J | 72 ]
and similarly for the currents;
I, (YB +Y ) 0 T v,
a - -
dx
I, |0 (Ys - Ym)_ | V2 |

The following reduced equations of order #n are thus obtained:

dv1/dx = -(z, + zm) I,=-2, 1"
for the 18t primitive circuit;
dI1/dx = -(YS + Ym) V=-Y, 7,
and
av,fdx = ~(2_ -2 ) I, =-2, I,
2 8 m’ "2 C for the 2nd primitive circuit.
dI2/dx = -(Ys S Y ) V=Y, 0V,

These equations are solved for the eigenvalues M., for the firat set and
A. for the second set as if they were separate systems. The paire of eigen-
vectors P, & @, and P2 & Q,2 for the separate systems respectively, can then
be formed as befcre.

Then the actual eigenvalues for the complete double-circuit system are:
A 0
¢] )-2

where A, and A, are diagonal matrices of order 1313 x #n, and the actual eigen-
vectors of the“complete system arei (e.g. B,= k P)

r - 1 o - - -
1 1 P1 0 P1 P2
P = =
L 1 1 ] -0 P2 ] -P1 Pz‘
and
L B L R L
Q= -
n L I A 25 B A )
where P1 » By Q,1 and Q2 are all mguare matrices of order 4n x #n,

Inpedances are obtained by an inverse process so that, for onTple. the
characteristic impedance matrix of the actual system ia (Z,- x 2k~ )T
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E 1| [24y O 1 1
zp - %
1 1 0 Zo2| | -1 1
-
(Zo1 + zoZ) (201 - zo2)
= 4
_(Z°1 - zo2) (301 + Zoz)

where Z jand Zgo are the surge impedances of the primitive oircuits and sach
of order #n x Si. Z, is of order n x n,

Example

The above procedure providea by inspection the wave sclution for propa-~
gation along a telephons line in which the parallel conductors (n = 2) are at
equal height above ground. Here Z and Y are factorised to give

5, 0 (Zyq+ Z29p) (Y144 Xqp) 0

0 8, ° (294 242)(¥y4= Yy3)

so that, applying det(S - AU) = O gives

Ao O (Zy9% 25) (Y 4% ¥yp) 0
x n L
o A, 0 (244- 2920 (Y44 ¥qp)
and the two mode~propagation constants aret
2 RN
Y = A1 and Y, = A7
Evaluating the matrices of eligenvectors givea
1 -1 1 -1
P= and Q=P =3

1 L 1 1

For the surge impedances, applying eqn.(15):
. S )
Zoy= 517 2y = (24,0 1) Yy + Yypl) (2449 245)

= \/LZ.I1+ 200/ (Y% X45)

and

I IR
Zop™ 850 2y = LU0y 20 (0= Yol (B 24p)

= ‘/(zn' IPOZALPPLIR PPV
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Hence A B
z, = %
B A
where 4 = 201 + zo? and B = zo1 - 202

It is interesting to note from the structure of P (and Q) that, for the
value of')1 propagation takes place with the nodal voltages {and currents)
equal and in phase in both conductors, and equal and antiphase for the value
of k-

2

8. CONCLUSIORS:

The important role which eigenvalue theory playes in the analysie of
multiconductor transmission lines has been demonsatrated. The form which the
equations take is exactly the same as that of the well known equations of a
gimple transmission line, provided that the order of multiplication is
observed, Furthermore, by using the eigenvalue technique the form of the
solution is such that it permits a very simple physical iterpretation of the
mechanism of propagation., It is therefore easy to prove that waves travel as
linear combinations of surge waves or modes, each of which is associated
with a fixed vector distributlion of voltage and current, together with an
attenuation and velocity factors.

In addition, it has been shown that any incident (or reflected) travel-
ling wave of arbitrary distribution is characterised by a fixed connection
between voltage and current vectors known as characteristic {or surge) impe-
dance matrix or its inverse known as the characteristic admittance matrix.
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10. APFENDIXES:

10.1 Matrix functions:

In general, if a matrix S ia related to an eigenvalue and eigenvector
matrix as follows

S=P A P"1 = 1#2, say
then a function of matrix §, f{S) is defined as
£(s) = P £(A) P = 1 412)

and since f()i) is diagonal, the matrix function f(§) is defined in terms of
known functiona, e,gz.

because si’s’b-PkJ“P”P ’l‘p'1=P N X}’P"=P Arl=s.
2

and exp(S)

]
=]
+
o
+

1, P)~2P'1+ P )\513"'+
2! 3! LI B B B )
N2
PU+ A+ Fr v §7

PUP 4+ PAF

[}

-1

+ 4.0a. )P

1

Pexp(A) P = exp(¥°) .

(Note that the exponent of a diagonal matrix is obtained by taking the expo=
nent of each term in the matrix, )

Also, exp(t Sé x) = P exp(t )\% x) P - exp(}yrx) .

10,2 Mode dimtribution vectors:

It is important to realise that, if the distribution of voltage at the
gending end does not correspond to a particular mode, the initial distribution
is not necessarily preserved as the wave progresses along the line, Consider
a 3-phase horizontal line in which the eigenvector matrix P is given by

modes
—l
1 2 3
a1 1 1 1/3 1/3 1/3
a
@
P =2lvi1 o -2 ; Pl = 172 o -1/2
=
=]
et -t 1 L1/6  -1/3 1/6
Case 1 ;- when the applied volitage at the sending end corresponds to any
----- mode, 1 , say. i.e.
2
vy = |2

8 2
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Thus, at the serding end

i.e. there is only mode 1 component, The incident voltage on the three con=
ductors respectively are

mode 1 : 2 2 2
mode 2 H 0 0 0
mode 3 : 0 0 0
and phase voltage : 2 2 2

Since each mode is subjected to its own attenuation factor ams it is prog-
reesing along the line, the corresponding incident voltage values at the
receiving end are (Pig. 1):

mode 1 : 2b 2b 2b
mode 2 : 0 0 0
_mode 3 : 0 0 0
and Phase voltage : 20 2o 2b

where b = expt- h% 1) , 1 = length of the line, and the units of ")% 1* are
in nepers.

Case 2 :- when the applied voltage at the sending end does not correspond
to any mode, {.e. for example

0
VB = |1
0
Thus, at the sending end
-1 1/3
v = P ¥V = 0
8 B

-1/3

which indicates that there is no mode 2 component. Following the steps of the
firet case, the incident voltage an the conductors ares

mode 1 : 1/3 1/3 1/3
mode 2 : Y] 0 0
mode 3 : =1/3  2/3  -1/3
and phase voltage 3 0 1 0

At the receiving end, the corresponding values are (Fig. 2):

mode 1 s {(1/3)b (1/3)v (1/3)b

nmode 2 : & 0 0

mode 3 ; -(1/3)c (2/3)e  -(1/3)c
and phase voltage : (%b - %c) (%b + %c) (%b - %c)

where b is as before and c = exp(- A% 1).

Compariscn of the receiving-end phase voltages in both cases shows that,
whereas in Case 1 the initial distribution is preserved it is not in Case 2,
This leads us to the fact that the structure of the modal columns (determined
by the line parameters) is of great importance in some problems. For example
where power=-line carrier signals are applied to a transmiseion line, it is
desirable to choose a coupling method that results in an incident pattern in
which the mode of lowest attenuation is domenant in order to minimise losses.
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10.3 Relationship between elgenvalues and eigenvectors of a matrix and its
trangpose:

Since the eigenvalues of a matrix S are evaluated by solving the poly-
nomial det(S - Mgy U) = 0 in Ay, then the eigenvalues of a transposed

matrix mast equal those of the original matrix because the determinant of §
is the same as that of 8. t

Now if q"stq=7\
where Q@ ie the eigenvector matrix of St’ then by transposition
-1
Q S Q "7\')\

gsince the transpose of a diagonal matrix is the same as the matrix itself.

But Pr1S P= N also, then by comparison we havej
q_tsp'1 or c;,-:lD;1

It can also be shown that § = (A Pt)"‘l where A is any diagonal matrix,

modes 3 modes
v 1 2 = - 1 1 2 5 Y
° o 3 b = exp(- A7 1) » o & T
2 o -~ — == —02b
0] 0
202 22 - 2 —02b
0 2b 0 0
2 02— - —0 2b
sendi receivi
Fig. 1 ¢t Illustration for Case 1 of Appendix 10.2.
(Only incident waves are demonstrated)
modes
od
modes ; : 5
Vg | 2 3 3
"3 0 a1/ b = exp(- AT 1) bhoo e Ve
00 — - (o - o)
/ / R 1 2 3 3
Y 0 2/3 = - =b 0 =c 1 2
10 ’ e = exp(- A 3 3 ‘3(3b + 30)
1 1
Z0 0 =-=C lb - lc
0 -1
o o/3 /3 7 (30" 3°)
send ing receiving
end end

Fig. 2 s Illustration for Came Z of Appendix 10.2.

(Only incident waves are demonstrated)



