EXPERIMENTAL DIAGNOSTIC USES OF LAPAROSCOPE IN DOGS

G. A. El-Sayad: M. A. Seleim and A. S. Atiba
Deparment of Surgery. Fac. Vet. Med.; Kafr El-Sheikh
Tarita Universily, Egypl

Abstract

The present study was carried out on 65 dogs in surgery dept. Fac. Vet. Med., Kafr El-Shcikh, Tunta Universily. The results of laparoscopic examination of the abdomind cavidy provide accurate inspection of the anatomical relations between the abdominal organs and differentiate between the normal and abnormal appearance of these organs.

Laparoscopic biopsy of the liver was done under divect inspection of the setected lobe and provides enough tissuw size for histopathological examination.

From the proceeding results, it can he concluded that the laparoscopy is an accurale non-inuasite techuifue for exmmation and biopsy of the abdominal organs. The changes of the site of the primary port are indicated according to the organ of intercst. The changes of the animal posture are indicated to enhance inspection of the abdomi-1 nal organs. The complications of diagnostic laparoscopy and biopsy were minimal.

;
 INTRODUCTION

Laparoscopy is a surgical procedure performed through a very small inctsion in the abdomen. using sipecializéd instruments. A pencll-thin instrument called a laparoscope is used and II gives the surgeor an exceptionally clear view on a T.V. monitor. in the interior of the abdominal cavity.

The firstdiagnostic dog laparoscopic procedures were performed by Kelling (1901), using essentially the same technique employed today. Further development of laparoscopic procedures and equipments fill it's ealled now "minimal invasive procedures."

Dlagnostic laparoscopy is a technique which. allows visualization of the intertor of the aluduminal cavity and differentiate between the normal and palbological conditions of the visceral organs. with minimal complications and avordance of nnnccessary laparotony.

Laparoseopic guide biopsy is one of the detinitive diagnostic methods of the intmal ongan. It was done under direct observation of the organ of interest and provides opportunity to detect a
very small lesion.
The ainn of this work is to study the application of laparoscope and its benclit in explomation of the abdominal cavity, sclection of the more suitable accesses to variant visceral orgions and select the animal position that enhance visualization of these organs as well as safe liver laparoscopic guide biopsy. all with minimal complications.

MATERIALS AND METHODS

The present study was carincd out on (65) apparently healthy adult dogs from loolh sexes weighting trom 15 to 25 kilograms, at Surgery Dept. Faculty of Velerinary Medicine Kali telSheiklı, Tanta University,
'The dogs were housed in scparate kennels. One day prior to surgery. the dops received no food. The hair at the abdominal area from $10^{\text {th }}$ intercostal space candally to the liank and from dorsal to veniral midline was clipped and shaved.

Instrumentation :

1. The Iaparoscope connected to the light source (Fig. 1).
2. Cog_{2} misulilator (Fig. 2).
3. Camera unit (Fig. 3)
4. Insulflation ncedle (Veress needle) (Fig. 4).
5. CO_{2} tank.
6. Video endoscopic computerized sysieni.
7. Troear and cannulas (Fig. 5).

Fits. I: Showitig $10 \mathrm{~mm} \mathrm{O}^{\mathrm{C}}$ angls lipparoweope :A). the leglit source (J) and the light cable (C)

Fig. 2: Slowwing tle insumbalor unit (A). comected with the gas filier (D) and lie gas Jube (C).

Fïg. 3: Showing lice cancera unil (C.LI). convected with the emonera cable

Fig. 4: Slowing the Veress Nerdle (V.N)

G. A. El-Sayad et al...

Fig. 7: Shewink sansef (As. hombey forcens (3). praspung lioracps (C) inul lrociar cimmiala)
8. Areossory laparoscopic Iriseruments: Blunt probe (Fis. 6). Graspert. lor haldind af the ab)(lominal orguns. Scissurs and Biopsy forceps (Fig. 7).
9. Ohier insilrumenis required for laparoscople procedures as: Scalpel No. I or 1. Scissors.「ruwel chips. Needle holder, needles and Suture materials.

Anaesthcsla and laparoscople procedures:

A venous cannula was inserted and fixed in the recurcent tarsal vein lor infeetion of preanaesthethe medications as well as anarshliebe solution then lor injection of lluid therapy fin some cascs If nceded.

The dugs were pre-medicated with $0.02 \mathrm{ng} / \mathbf{k g}$ b.wit of atropine sulplıatellingectrd subrulaneously to prevent vasovagal rencex [rotu visceral manipulation. Kylazin $1 \mathrm{ICl}^{[2]}$ was given in a dose of 2.2 m g/ Kg b.w. injected intravenously just before the induction of general dmaeshesia usIng pentothal sodium ${ }^{(3)}$ in a dose rate of $10-15 \mathrm{mg} / \mathrm{kg}, \mathrm{b} . \mathrm{w} 5 \%$ sol injected intravenously until the main reflexes disappeared. The dog was placed on dorsal iecumbent position and haditional measures for aseptic surgery (de-lattoning, distnfcetions will beladme ${ }^{(1)}$ and surfical draping) were adopted in cach aninnal.

Establishment of pneumoperitoneurn;

The Veress needic was used to penetrate the abdominal wall and it was commeled with insunflator by insufflating tule to deliver Co_{2} gas itito the abdomen. Insultation produces a gas luyer that separates the abdominal wall from the underlying viscera (ling. 8).

Primary part placement:

The closed teclinique of primary port plarement of 10 mm trocar-cannula was used to penetrate the abolominal wall, and through th. the laparoscope could be passed (Fig, 9),

Sccondary port placement:

The sccondary port (Trocar-cannula 5 mm] was inserted (Fig. 10) to allow passage of accessory inslrumicuts that used for elthei mantpulation of the viscera or to performi some procedures as laparoscoplc biopsy (Fig. 11).

 abdonnial cal city.

Fias. 9: Stuming the methed of msertoon of He promary part
' Alropine sulphate : Misr Co
' Xylarm hel :Adwia

- Pentothal sodiunn : Biachemic Ginth
${ }^{4}$ Betadine (Bovidine iodine, Nile Co., A.R.E)

Laparoscopic gulde liver biopsy:

Liver Lioplsy is one of the definitive diagnosis of the liver diseases: it was done under the gulde of laparoscope after complete eximintation of the liver surfaces. and the selection of the area to be blopsicd according to the nature of the liver cliseasc (focal or dilfuse).

Fig. II: Showing the secundars trocal calmula in II passed thotult tive atidemmal wall

 ankl alpumate ol pati al lice liver (l.) and the sumatill (S) (b)

- Atropine sulphate : Misr Co
- Pentuthal soditin : Biochermic Gimbll
- Xylazin I!el :Adwia
- Betadine [Buvidine todine. Nile Co.. A.R.E)

G. A, El-Sayad pt al...

RESULTS

The results of the present study revealed that, there are dillerent sites of entry of the priniary port. Edch sile was Indieated for one or more organs to provide maxtmal visualization and minfmal complications.

The changes in animal posture during lapirascopie procedures were indicatcd for beller exposure of abdominal organs. which in dursal recumbent animal and the head in a down position for exposure of the caudal half of the abdominal cavity While in dorsal rccumbent end head up position for exposure the eranial hall of the abdoninal cavity. The antmal was shifted to the right or lefl side for exposure of the opposite side.

Laparoscopic exploracion of abdominal organs :

Lwer:

':
Regarding to exploration and examination of the liver, there were thrce aecesses:

1. The Umbllical access or midine $1-2 \mathrm{~cm}$ caudal to the umblleus access :

The aninal was placed in a dorsal recumbency and his head in upward posilion. The secondary port was placed about 5 thright to the printary one to help int revaction of the luer lubes. The fateitorn higament fat restricts the free movenuent of the laparascope and its cannuta.

2. Right lateral mid abdominal access:

The primary port was placed at 3 to 5 cm caudal to hic last ib or between the rish costal arch and the proximal aspect or the thac cress and midway botween ventral midine and the humbar vertebrae with the animal head in upward posilion and 300 left lateral recumbency. This aepess uas selected for right side lobes of the liver hight medial. right lateral, catalate and part of quadrate lobel.

3. Left lateral mid abdominal access:

The primary port was placed at 3 to 5 cm caludal to the last rib or between the left costal arch and the proximal aspect of the illae cresi and medway between the ventral intdine and the luinber vertelurae with the animal head in upward position and 30^{n} right lateral recumbency. This access was selected lor left side lobes of the liver (left medial, Jeft lateral and part of quadrate lobe..

Normal liver has a smooth surface with sharp bordors and uniform decp red colour (fig. 12). The portal areas and unlform sinusoidal configuration could be delected with close np examinathon to the liver surfaees. Gentle palpation of the liver with either the laparoscope or live palpation probe eauses tempurary blanching and depression of the organ's surface and not lear or bleed.

G. A. El-Sayar et al...

Most of the liver surfaces could be examined by the laparoscope. The convex surlace of the liver was easily viewed as it drapes over the stomach and tntestine. The coneave surface and the helium of the liver appeared when the animal was tited with lts head down and the blunt probe used for elevation of the lobes up (Fig. 13). The caudal portion of the caudate lobe raps the cranial pole of the right kidncy.

Gall Bladder :

The most suitable site of the primary port used for evaluation of the gall bladder was at the umbilieus or at the right lateral mid abdominal access. The andmal was placed in dorsal recumbency with its head up and slightly shilied to the left lateral side. The second port trocarcannula was placed at 5 cm right to the primary one.

Normal gall bladder was not appeared from the eonvex surface of the liver. Exposure of die gall bladder was done. using the blunt probe to separate between the right medial and the quadrate lobes or elevation of the right lateral or medial lobes up (Fig. 14). Nonmal gall bladder appears dark green blackish III color, soft and fluctuant on manipulation with the probe.

Liver blopss:

The same threc accesses for laparoscople examination of the liver could be adapled for Jiver biopsy. The blupsy samples couid be taken fiom all the liver lobes (Fig. 15, 16 \& 17). The Blopsy sample taken from the liver by this technique was of less tissue damage to the liver and the sample, (Fig. 16).

The annount of bleeding from the blopsy site was minimal and the clotting was occured wilinin (ew minutes (2-4). In some cases with Increased amount of bleeding the blopsy site was oceluded by the blunt probe, the bopsy forceps or the laparoscope for one minule ill eloling oe eurred (Fig. $18 \& 19$).

(ig. I2: Shoming sepratioll between Hex lefl mediul lole (L M I) ard th: Ien lateral lebe (C.LL.) or the liver using the blum prote (IS P^{\prime}) And the dxaphragm (D) und Ne slomach (s)

Ine. IS: Slan ing the bigny forcepts (BF) grisping the lefi latemal lole of the liver (L.L.L.j nud prolled if uy faut of me stomach (S) aind the daabiningur (D)

Hig. 13: Slaving tlevaled |c| inedial lute (L.M.L) nin appearame of the condar. surface. loort of dic letr lderio lote II.L.L.) and ils (lâjlirogio (D)

4x. 16; Showing the biopst lirlegs (3.1 I) grasping the lell tateral whe of the liver (I..I I) and pulicel it ul Pan of the stomich (S). ICR medial lobe < N I I and the dianhrage: (D)

Iif. 18: Showing the hoghy tercens (d.d) aller culme the hop'sy sample from the elt medial line (L.MI), he diaphagen (1) [are at the shanos-l (6) and the greater memum (C.O)

Fig. (リ: shasing 'he boply site of the ix'i unculal lohe and pare of lla stombich

G. A. El-Sayad et al...

Stomach:

The most sultable site for the primary port hinserlian was at the unibilicus or ventral midhue: Iem caudal to il. The animal was placed in dursal vecumbency willi lis head in upward pusition. The stuntach the largely in a transverse postion more to the left of the median planc. li lies in contact with the liver lobes to produce an extensive gastrie interession or concavily in the caudal surface of the liver (Fig. $12 \& 26$). and its greater eurvature attached to the splecn (Fig. 20). It is separated fiom small intestIne and left kidney ly grealer onentun.

Intestine:

The most suitable site of the promary port Insection was at the mobilieus or at the ventral modline 1-2 cm caudal to the umbilicus and the secondary port placed at 5 cmipht to the prinary one. The animal position was in dorsal recumbency whth the liead in downward position.

The intesthes oecupy most of the abdominal cavily and exiend caudal to the liver and the stomach till the pelvic inlel (fig. 22]. It was- found that, the Intesines are covered by lic onmentum which, was refected using the blunt probe or grasplage it using the gasping forecps and nioved cranially to be rested on the veritral surlace of the stomach (fig. 22).

The dutedenumin appeared at the right side of the abdomen as if runs caudally from the pylorus (Fis, 2). Multiple jejunal Joops with its altached mesentery were localed bencalh dhe undsilicus (Fig. $22 \& 23$). The mosi accessible portion of the colon was the desecneling colon, which is long and usually quite stralght (Fig. 2'S\}. It lics dorsally close to the illo-posoas musicle aud at its Leglnaing it lies in contace what ventral striace of the left kidney (FIg. 25. 30 R 31).

Splecen:

There were different acecses lor expleratlon of the splecn:
The umblleus acecsse was suitable for exploration of most of the splecn surfice. To galn betfer aceess to the splenic hllus. Whe aninal should be rotated 45° to the ight. The left hateral mid abdominal approach may he associaled with many complications as the splecn leseated close to the entry sile.

The splecn with its normal appearanec and relalion to ofier organs is demonstraled in (Fig. 24. 26 of 27). Spicen was attached to the grater envature or the stomach by gastrosplenic ligament. through it, the left gastro-eplplole vessels cross froni the stoinach to the spleen (Fig. 20). Splecn was contacted will the cranlolatcral surface of the left kidney (Fig. 25, 29 \& 30).

Pancreas:

The mosi suitable site of the primary port used for evaluation of lie pancreas was placeal at
the umbilocus or al the right lateral arcess, with the anmelal placed in dursal recumbenty slightly shifted to the lett side.

The pancreas wats found adlacent to the duodenum and to enthance its vistretixationn, the
 appears pale cream colour and coarscly lolsulated (Figs. 281.

G. A. El-Sayad et al...

Kdnegs:

There were different accesses for exploration of the kidncys

a. The umbilical access for the primary port plucernent.

The (wo kiclneys could be inspected through this access. For inspection of the right kidney. the animal head was In upward position and rotated $30-60^{\circ}$ to the left and the laparoscope directed cranlally and to the right side of the animal.

For inspection of the left kidney the anlmal head was in upward position and rotaled $30-60 .$. . to the tight and the laparoscope was direeted crandally and to the lefl side of the animal.

b. Right lateral access for trspection of the right kidney.

The Animal was placed with the head in upward position and at $30-60^{\circ}$ left lateral recumbency . The primary port placed at 5 cm caudal to the last rll) and 3 to 5 cm ventral to the border of the lumber muscles and the trocar-cannula pointed in craniodorsal direction and chttr lhe abdonen in shallow angle.

c. Left lateral access for inspection of the Left kidney.

The Animal was placed in head up position and at $30-60^{\circ} \mathrm{C}$ right lateral recumbency. The prinury poit placed at 5 cm caudal to the last tib and 3 to 5 cm ventral to the border of the lumbar muscles and the trocar-cannula pointed in cranial dorsal directlori.

Kidney appeared bean in shape, pale gray colour and has readlly apparent capsuldr vasculalure (Fig. 29 \& 32).

The right kidncy was bounded cranially by eaudate lobe of the liver and fixed to if by the lie-pato-fend ligament. The candal pule was contacted with the pancroas and ascending colon.

The left kidney was appeared without attachment to other urgans. It was in contacled with the spleen and stomach crantally, descending eolon raudally and abdominal wall laterally and lumbar muscles dorsally (Fig. 29 \& 30).

The renal htlus contains a variable amount of adlpose tlssue. renal pelvis and branches of renal artery and vein (Fig. 31).

Urinary bladder :

The most suitable site of the primary port used for evaluation of the urinary bladder was at the ventral midline midway between the umbilicus and xiphoid with the animal In dorsal recumbency and its head in downward position. The laparoscope directed caudally. Urinary bladder appears with close inspection gray with tortuous serosal vessels (Fig. 33 \& 34).

G. A. El-Sayad et al...

Deep inguinal ring:

The most suitable ste of the primary port used luc evaluation of the deep ingumal ring was placed at the ventral midine $1-2 \mathrm{~cm}$ caudal to the umbilleus.

The animal was placed in a dorsal recumbent position and slightly shitted to the risht side for better visualization of the left deep inguinal ring and the laparascope divected to the left side. The animal was shightly shifted to the left side for better visualization of the right deep inguinal ring and the laparoscope directed to the night. Deep Ingulnal ring consisted of vaginal tunle and spermatic cord (ductus deferens and testieular artery and vein) (Fig. 35 \& 36).

Ovaries:

The most suitable slte of the primary port used for evaluation of the right and left ovaries was plaeed at the mobilicus. The animal was plaeed in dorsal recumbent position will head down (Trendelenbuss position) and tllted 45° to the left to expose the risht ovary and 45° to the right to expuse the left ovary. Left ovary located caudal to the eandal pole of the left kidney (ifig. 37) and the right otary located eaudal to the caudal pole ot the right ovary. Tha richit ovary was foumbleme cranial than the left onc.

Laparoscopic complications:

In the present study most of complieations was related w the Ulind insertions of the Veress needle and the pitinary port. Three cascs were recorded with the veress needle insertion, two of them cansen hnjury to the spleen surlace (fig. 38) and one cause complete permeration lo the bplen (Fig. 39, 40 \& 41).

Also. the prinary trocar causced injury to small abduminal blood vessets in 1 wo casces and

 the abdominal visera because it was done under visualization of the laparoscope.

 rink (L)K) and lesicular arlxivi
 delerése (0) b) and the ahdernimal

 surfese (\$p) , during ituseninu of the lerese leedle allud liomation of

Jig. J6; Slowing i'se deap ingaintial ring (D, l XI. leblicidir antry will reill (: А, W) the ducurs delerens.
 He descending colon (L) [i) and

Fig. 34: visurine me tepmplets pe ketänd of ds sylecis (4p) by die Vores acedle it Ni darilie Ils mertion Ahd pppearance if the gitaur ancontum ($)$) and tie

Fing 37: \&lawite the lell atas
 leit kIdel (I N) , lacesl musthes (13, M) allil Ho

 Whe atalomunil tall A W'

Fig. tl: thuming the icinova al the Verics necille (VNi) frome the splen (Sp), And
 sumeraloin find the abdommal will i.h W,
 abdumal wall: A. W, the amentan:or

 (hat ai ve at mure Apreatathe of the blunit motcillan

G. A. El-Sayad et al...

DISCUSSION

Laparoscopy was eonsidered as an aecurate non-Invasive lechnique to sludy the normal anatomieal relations between the abdominal organs. evaluate the abdominal eavity and taken a biopsy from an abdominal organ. These results were in agrcement with Johson and Twedt (1977); Coupland, et. al. (1981); Boyce (1982) and Jones (1990).

The Veress needle was inserted after making a stab ineision (3 mm in length) ol the skin. It was wide enough for easily insertion of the needle without resistanee and to avold leakage of penumoperitoneum gas from around the needle. Whereas SIIva, et. al. (1995) preierred introduction of the Veress needle to the abdominal cavity by direet puncture of the skin wilhoul incision. While the Incision was smaller than that described by Kenawy (1998) and Schossler (1998) whose made 1 cm Incision for Insertion of Lic Veress necdle.

In the present study, the Veress needle was introduced at caudolateral to the umbilicus and directed toward the pelvis with slight head down position of the anmal. This technique has been proved to be sale proeedure and decrease the chance of injury to the splcen. Similar resulls were reorded by Brearley, et. al. (1991) and Freeman (1999).

To ensure that, the Up of the Veress needle was In the abdominal cavity, a 5ml saline was inJeeted lhrough a sytinge athached to the hub of the Veress needle and injecycd without resistance. In the same time the abdominal wall must be symmetrically distended and produee lympanic sound on pereussion. This was in the same line as that described by clayman and McDougall (1993).

The suitable intra abdominal pressure (14 mm Hg) has been reached with maximum distention of the abdominal cavity by insullation of $1-2$ liticr of gas according to the size of the experimental cogs. This result was in agrecment whth Whdt, et. al. (1977); Jones (1990) and Freeman (1999).

The safe insertion of the primary port was done by placement of the anlmal in doisal reeumbent posidion with slightly head down. Transient increasing of the intra abdominal pressurc was done by more Insuffation of gas between 20 and 30 mm Hg to avoid depression of body wall during trocar insertion and injury of the abdominal organs. This elevation of the intra-abclominal pressure had no serious effect on the physiologlcal function of the animal becausc it was done in fcw minutes and then return to 14 mm Hg during the laparoscopic procedures. This technique was described by MeDougall, et.al. (1994). Similar results were obtalned for the safe inscrition ol the primary port. but with the intra abdominal pressure Incrcased transiently to 17-19 nomles.

G. A. ElSayad et al...

The secondary portal with minimal complications was done under dircel gutdance and transilumination of the laparoscope. It was performed to allow manipulation of viscera and other lar paroscopic procedures as blopsy. This result was agreed with Kbvousai and Clayman (19az) and Fischer (2002).

The distance belween the primary cannula and the speondary cannula was al least fom to provide conough space for free movement and manipulation of the abdominal organs. Phis result was in agrecment wilh Jones, et, al. (1985).

The shop stiek method was suitable for location of the aecessory instruments within the abdummal eavity by erossing the laparoscope with the aecessory instrument and sliding them agatust one another until the later appears infront ol the laparoscope lens. This resille conticted with Rlour (1978).

There are dilferent accesses had been deseribed in heratimes for evaluation and bopsy ol the liver at right laterad and left latcral mid abdonimal and umbilical sites. It has bencon had fail. the rintil dateral mid abdominal access was sutable for inspection of most ol the liver lobes and цall bladeler. "Mis result was agrecd with Jones, et. al. (1985) and Twedt (1999),

The laparoscope pert at midtinc $1-2$ en catadal to the umbilieus was not suthable for the liver
 ment of the laparoscope eramally. It is indeated mainly for diadnosio and operalive proncelures in the stomach and intestines (small and large). This result was coisiciding with Jones, et. a). (1985); Bohm and Milson (1994); Sllva, et. al. (1995): Twedt (1999); Rawlings, et. al. (2001) and Rawlings, et al. (2002).

The: Injury of the spleen at the primary port occurted during the left lateal mid abobomind ancess due to the closely relation of the spiecn to this site ol entry. This result was an ancernent with that reported by Jones, et. al. (1985); Trias, et. al. (1996) and Twedt (1999).

A 10 mm rigid seope provided suitable light, largest field of view and the gicalest clasty of vision in the prescnt study, the same as founded by Freeman (1999)

The changes of the duimal posturc during laparnscopic: procedures were indifaled to allow better exposure of the organ of inlercst by shilting the abolominal viscera away from this ongan. The liead down tilt, expose the caudal alsdominal organs and the head up tilt, expors the cranal abclominal organs. These results were coincided wilh those mentionci hy wildt (1900); Spaw, et. al. (1991); Balley and Pablo (1999) and Peroni and Rondenay (2002).

The ambilical access of the primary port was suitable for examination of the spleco will the animal filt 45° io the right. The same acecss was indicated for the diagnostic and ogerative sur-

G. A. El-Sayad et al...

gery of the organs in the caudal half of the abdomen, as intestines lmost of the jejumum and the deseending eolon), urinary bladder and deep inguinal ning with its strueture (ductus deferens and (csticular artery and veln) with the animal in head down position. For the ovarics (right and left) the animal was placed in head down pusition and ult 45° to the right to expose the left ovary and tilt 45° to the left to expose the right one. These results were in agrcement with Wildt, et. al. (1977): Wildt, et. al. (1981); Wildt and Lawler (1985); Thiele, et. al. (1993): Poppas, et. al. (1994): Britanlsky, ct. al. (1996): Trias. et, al. (1996); Minaml, et. al. (1997) and Freeman and Hendrickson (1999).

The right and left kdencys could be examined by onc aecess at the mid line, $2-4$ cm caudal to the umbilieus. The anmal was plared in reverse Trendelenburg position and furns $30^{\circ} 60^{\circ}$ to the right for access the left kidney and turn $30^{\circ} 60^{\circ}$ to the lefl for access the right killncy. The blunt prolse was used to separate between the right kidney, duodenum, the lell kiducy. the spleen and the intestine. Laparoscopic close examination of intestincs allowed the assessment of the intestinal viability as intestinal color. mesenteric arterial pulsalion and peristalsis. This result was in agreement with Rudd and Hendrtckson (1999).

The most suitalle site for the right kidney laparoscopic aecess was approximalely 5 cm caudal to the last nb and 3 to 5 cm ventral to the border of the lumber muscles. The right kidncy is more stable due to its attachnent to the eaudate lobe of the liver. It is located between the right dorsal abdominal wall, the liver and the diaphragm. The kidneys appeared pale gray with readily apparent vasculature. This result coinclded with Grauer, et. al. (1983) and Grauer (1990).

Laparoscopic biopsy under guidance of laparoscope could ise performed with minimal complications and good direct visualization of target organ with possible multiple biopsy of organs. This result was agreed with Wildt, et al. (1977); Jones (1978); Nord (1982); Joncs, et al. (1985); Kerwin (1995): Richer (2001) and Flacher (2002).

The cutting and erushing technique during liver blopsy were of less tissue damage to the liver and the biopsy sample. The bleeding from the blopsy site was minimal and the clotting action lasted usually in 1-3 minutes. When increased amount of bleeding at the biopsy site. it could be occluded by the blunt probe, the biopsy forceps or by the laparoscope tip till clotting accurred. These results were agreed with Twedt (1999)

The rate of complications in diagnostic laparoscopy generally was low due to the decreased number of instruments and organs manipulation in compare with operative laparoscopy. This result coinclded with Wang, et. al. (2001). Most of complications were related to the Veress needle and the primary port trocar insertinns, as these were done blindly. This resull was agrecd with Crist and Gadacz (1993)

G. A. El-Sayad et at...

The veress needle insertion had higher compliration rate than that donc by the primaty purt trocar. This result was in agrecment with that reported by Lee, et. al. (1993) and Yerdel, et. al. (1999).

The complication rate for the secondary port was less than that of the primiry port as it was done under direct visualization and illumination of the laparnsrope. Stinilar results were also noted by Davis, et, al. (2000).

REFERENCES

Balley. J. E. and Pablo, L. 8. (1999) : Anaesthetic and physiologic considerations for vetcrinary embisumgery in Veterinary endusurpery by Freeman. L. J. ed, chapter 2 Mosluy. Inc.

Bohm, B. and Milson. J. W. (1994) : Animal models as educational tools in laparoscopic colorectal Surg. Surg. Endosc. 8: 707-713.

Boyce, H. W. (1982) : Laparoscopy: In: Schilf. L. and Schiff. F. R. eds Discase of liver. Philadelphia: J.B. I-ippincott 333-348.

Brearley, M. J.; Cooper, J. E. and Bullivan, M. (1991) : Color atlas of small animal endoscopy. Wolt publishing Ltd. pp 87-89.

Britanisky. R. G.; Poppas, D. P.;Shlchman, S. N.; Minlnberg, D. T. and Sosa, R. E. (1995) : Laparoscopic laser-assisted bladder autoaugmentation. Urology 46: 31-35.

Clayman, R. V. and McDougall, E. M. (1993) : pneumoperitoneuni in: Laparoscopic urology. Fy Clayman, R. V. and McDougall. E. M. eds. St. Louis Gually medical publishing

Coupland, G.; Townsend. D. and Martin, C. (1981) : Peritoneoscopy use in assessment of h-tra-abdominal maliunancy surgery. 89: 645-649.

Crist. D. W. and Gadacz, T. R. (1993) : Complications of laporoscopic surgery. Surk. Clin. North. Ainn. 73: 264-289.

Davis, D. R.; Schilder, J. M. and Hurd, W. W. (2000) : Laparoscopic sceondary port conversion using a reusable blunt conical imcar. Obstetrics \& Gynecology 96: 634-635.

Flscher, A, T. [2002] : Equinc diagnosic grsurgical leparoseopy. W.B. Saunders company. 9th Ed.

Freeman, L. J. (1999): Vcterinary endosurgery, chapters $1 \& 4$ Mosby Inc.
Freeman. L. J. and Hendrickson, D. A. (1999) : Minlmal Invasive surgery of reproducive sysicm. In vetcrinary endosurgery by Frecinan. L. J. rhapter II Mosby, Jnc.

Graver. G. F.; Twedt. D. C. and Mero, K. N. (1983) : Evaluation of Japaroseopy lor obtaning renal biopsy specimens from dogs and cats. J. An. Vet. Med. Assoc. 183: 677.

Grauer. G. F. (1990) : Laparoscopy of the urinary tract. In sniall andmal endoscopy by Tams. 7 . R. cditor (1000) St. Louis, Mosby

Johnson, G. F. and Twedt, D. C. (1977) : Endosropy and laparoscopy in the diagnosis and management of neoplasia in small animaks. Vct. Clin. North. Am. 7: 77-42.

Jones, B. D. (1978) : The use of lapaoscopy to abtain liver Liopsies. Scien. Pres. 45 th ammal mpeting Am, Anim. Hosp. assoc. 245-246.

Jones, B. D. (1980) : Laparoscopy. Ver. Clin. North. Am. small animal pract 20: 124:3-1.263.
Jones, B. D.: HLl, M. and Hurst, T. (1985) : Hepatic blopsy. Vet. Clin. Norll. Am. 15: 39.
Kavoussi, L. R. and Clayman, R. V. (1992) : Urolgist at work trocar fixation during laparoscopy J. Endourol 6: 71-72.

Kelling. G. (190x) : The first cxperimental laparoscopy. Cited by: Gunning. J. E. (1974): The histury of laparoscopy. J. Reprod. Med. 12: 223-231.

Kenawy, A. (1998) : Experimentai laparoscopy and instruineritation in dogs. Assiul Vel. Mcd. J. Vol. 39 No. 78

Kerwin, s. C. (1995] : Hepattc asplration and btopsy terhniques. Vet. Clm. North Am. [Smal animal pract) 25; 275.

Lee, V. S.: Chan, R. s.; Cucchluro, G. and Meyers, W. C. (1993) : Complications of Laparoscopic cholecystectomy. Am. J. Surg. 65: 527-532.

McDougall, E. M.; Figenshau, R. S. and Clayman, R. V. (1994) : Laparoscopic pneumoperitonrums impart or hody habitus. J. Leparoendose. Surg. 4: 385.

Minaml, S.; Okamoto, Y.: Eguchl, H. and Kato, K. (1997): Successful lapaiuscopy assisted ovarinhysterectomy in two dogs with pyonetra, J.Vci. Med. Sci. 59:845-847.

Nord, H. J. (1982) : Blopsy diagnosis of cirrhosis: Llind percutancous versus guided direct vision techniques -a review, Gasitrointest. Endosc. 28: 102-104.

Peronl. J. F. and Rondenay, Y. (2002) : Analgesid and anatsthesia for equite laparuscopy and thoraruscopy in equinc diagnostic and surgicl laparoscopy by Fischer, A.T. (2002). ed. chapter 11. W.B. Saunders Company.

Poppas, D. P.; Gomella, L. G. and Sosa, R. E. (1994) : Basic laparoscopy. Pncumoperitoncum ind Irocar placement in Gomella, I. G.; Kozminski. M. and Winfield, 11. N. laparoscopic urologic surgery New York Raverr press pp. 75-84.
Rawlings, C. A: Foutx. T. L.: Mahaffey, M. B.: Howerth. E. W.; Bement. S. and Canalls, C. (2001): Rapid and strong laproscopic assisted gastropexy in dogs. Aurl. J. Vet. Res. 62. 871-875.

Rawlings. C. A.; Howerth, E. W.: Bement, S. and Cenalis, C. (2002) : Laparoseopic-assisted enterostomy tabe placement and full-thlekness biopsy of the je.junum with serosal

G. A. El-Sayad et al...

patching If dogs. Ams. J. Vel. Res. 63: 1313-1319.
Richter (2001] : Liver biopsy methods: laparoscopy us ultrasound us fine needle aspiration. Tufts Animal Expo. Confcrence Proceedings. Sept. 1.

Rloux, J. E. (1978) : An unusual complication of double puncturc laporoscopy in Endoscopy in Gynecology Phillips. J.M. ed. American Association of Gynecologic laparosenpists Dept. of Publieations. Downey call 76-77.

Rudd, R. G. and Hendrickgon, D. A. (1999) ; Minimally Invasive surgery of the urinary system. In veterinary endosurgery by Freeman, L. J. (1999) ed.. chapter 12 Mosby Inc.

Schoanler, J. E. (1998) : Diagnostic laparoscopy in dogs. Brazilian J. Vet, Kes. and Animal Science. 35: 123-126.

SLfa, L. D. M.; Onclin. K.; Snapa, F. and Verategen. J. (1995) : Laparoscopic intrauterime insemination in the bitch. Theriogenology 43: 612-623.

Spaw. A. T.: Ennis, B. W. and Spaw, L. P. (1991): Laparoscopic hernia repalr: (lic anatomic: basis. . J. Leaparocndosc. Surg. 1: 269.

Thlele, S.: Kelch, G. and Gerlanch, K. (1093) : Kastration der hundin durch laparuskopische ovarektomie. Kleinticrpraxis 38: 463-466.

Triag, M.: Targarona, E. M. and Balague, C. [1996] : Laparoscopic spleenectony: an cvolving techulquc. A comparison betwecn anterior and lateral approaclics Surg. Eadosc. 10 : 389-392.

Twedt. D. C. (1999) : laparoscopy of the liver and pancreas. In small animal endoscopy by Tams. 'J'. R. ed (1990) 2nd ed. Mosby st.;Louis pp 409-4 18.

Wang, P. H.; Lee, W. L.; Yuan, C. C.: Chno. H. T.; Liu, W. M, Tsai, Y. K. and Wang. K. C. (2001) : Major complications of operative and diagnostic laparoscopy for gynecologic disease. J. Am. Asso, of Gynaccologle laparoscopists 8. 68-73.

WIIdt, D. E.: Kloney, G. M. and Seager, S. W. J. (1977) : Laparosopy for the chect observation of internal organs of the domestic cat and dog. Aim. J. Vet. Res. 38: 1429-1432.

WIdt, D. E. (1980) : Laparoscopy in dog and cat. In animal laparoscopy by Harrison, [र. M. and Wildt, D. E. eds. (1980) Williams \& Wilkins, Baltirnore.

Wildt, D. E.; Seager, B. W. J. and Bridges, C. H. (1981): Sterilization of the male dog by laparoscopic occlusion of the ductus deferens. Am. J. Vet. Res. 42: 1888-1897.

WLIt, D. E. and Lawler, D. F. (1985) : Laparoscopic sterilzation of the bitch and quecn by ute-
G. A. EI-Sayad et al...
rine hum occlusion. Am. J. Vct. Rcs. 46: 864-869.
Yerdel, M. A.; Karayalin, K.; Koymen, A.; Akin, B.; Koksoy, C.; Turkcapar, A. G.: Erverdi. N.: Alacayir, I.; Bumin, C. and Aras, N. (1999) : Direct trocar Insentiun versus vercess needle insertion in laparoseopic cholecystectomy. American Joumal of surgery. 177: 249274.

اللالخص العرى

 طريق تص وحلاقة الـُـعر نى منطقة البطن.

 المــاعدة بأثل الـشاكل.
 مكان الفتحد حسب نوع العضر المراد نـحصه أو أخذ عينه منه.

 نتبجة لتعريك ععظم الأهضا ، إلى النصغ الأمامي.

G. A. El-Sayad et al...

من منه النتائع يكتتا إسـتمالاص الاكتى :

- أن منظار البطن يعـتبر من الأجهزة التـى تساعد على النـحص المتيثى لأعضا \& البطن بصورة واضتحت والتفرين بين

 بصورة أونـع

