Menoufia University

Faculty of Engineering, Shebin El-Kom Mechanical Power Engineering Department Second Semester Examination, 2013-2014

Date of Exam:

14/6/2014

Subject:

Numerical Methods in

Mechanical Power Engineering

Code:

MPE 322

Year:

Third Year

Time Allowed:

3 hours

Total Marks:

90 marks

Remarks: No. of pages: 2

No. of questions: 6

Allowed Tables and Charts: None

Answer ALL the Following Questions (Assume any missing data)

(Question 1) : (16 Marks)

1-a) (5 marks)

Explain using a diagram what is meant by accuracy and precision

1-b) (5 marks)

Choose the correct answer (in each case, there might be more than one correct answer):

i.
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^{-x} - x$$
 $y(0)=0$, $y(20) = 0$
(1. ODE 2. PDE 3. IVP 4. BVP)

ii.
$$\frac{d^2 u}{dx^2} + 2xy \frac{d^2 u}{dy^2} + u = 1$$

(1. Linear

2. Non-linear

3. Elliptic 4. Parabolic

5. Hyperbolic)

iii.
$$4\frac{\partial^2 u}{\partial x^2} + y^2 \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial y^2} + 4 \frac{\partial^2 u}{\partial x \partial y} - 4xy = 0$$

1-c) (6 marks)

Derive a finite difference expression to discretize the equation $\frac{\partial u}{\partial t} = -a \frac{\partial u}{\partial x}$ a > 0 using a forward time central space Crank Nicolson with averaging algorithm.

(Question 2): (12 Marks)

An investigator has reported the data tabulated below. It is known that such data can be modeled by the following equation $x = e^{(y-b)/a}$ where a and b are parameters. Use a transformation to linearize this equation and then employ linear regression to determine a and b. Based on your analysis predict y at x = 2.6.

x	1	2	3	4	5	
V	0.5	2	2.9	3.5	4	

(Question 3): (12 Marks)

Use Heun's method to integrate $y = 5e^{0.6x} - 0.8y$ and find the value of y(3) with a step size of 1. The initial condition at x=0 is y=2. The maximum allowable absolute tolerance is 0.253.

(Ouestion 4): (14 Marks)

Find the value of y at t=1.2 for $t^2y'' - 2ty' + 2y = t^3 \ln t$ using the fourth order Runge-Kutta method when y(1)=1 & y'(1)=0. Take h=0.2

(Question 5): (18 Marks)

Use the DuFort-Frankel's explicit method to solve $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$ for the temperature distribution, after 3 time intervals, of a long, thin rod with a length of 10 cm and the following values: k=0.49 cal/(s.cm.C), $\Delta x=2 \text{ cm}$, and $\Delta t=0.1 \text{ s.}$ At t=0, the temperature of the rod is zero and the boundary conditions are fixed for all times at T(0)=100 C and T(10)=50 C. Note that the rod is aluminum with C=0.2174 cal/(g.C) and $\rho=2.7 \text{ g/cm}^3$.

(Question 6): (18 Marks)

The non-dimensional transient heat conduction in an insulated rod can be written as

$$\frac{\partial u}{\partial \bar{t}} = \frac{\partial^2 u}{\partial \bar{x}^2}$$

Where:
$$\bar{x} = \frac{x}{L}$$
, $\bar{t} = \frac{t}{(\frac{\rho C L^2}{L})}$, $u = \frac{T - T_0}{T_L - T_0}$

where L= the rod length, k= thermal conductivity of the rod material, $\rho=$ density, C= specific heat, T= temperature at x=0, and $T_L=$ temperature at x=L.

With the following boundary and initial conditions:

$$u(0,\bar{t}) = 0$$
 & $u(1,\bar{t}) = 1$, $u(\bar{x},0) = 0$ for $0 \le \bar{x} \le 1$

Solve this non-dimensional equation for the temperature distribution using finite-difference methods and a second-order accurate implicit Crank-Nicolson formulation to integrate in time. Show not less than two time steps.

			Th	is exam m	easures th	e followi	ng ILOs				
Question Number	Q1-a	Q1-b	Q1-c	Q1-a	Q1-b	Q1-c	Q2, Q3, Q4	Q5	Q5	Q6	
	a2-2	a2-2	a2-2	b11-2	b2-3	b2-1	b11-1	b2-1	C6-1	C6-1 C15-1	
Skills	Knowledge &Understanding Skills			Intellectual Skills				Professional Skills			