Mansoura University Faculty of Engineering

Departmẹnt: Production Eng. and Mechanical Design Year: $1^{\text {st }}$ year
course: Strength of Materials
Code: PRE 5122

Date: 11/6/2014

Question One: (15 Marks)

Compute the shearing stress in the pin at B for the member supported as shown in Fig. 1. The pin diameter is 20 mm .

Fig. 1

Ouestion Two: (15 Marks)

A 1.5 m long tubular steel shaft of 38 mm outer diameter d_{1} and 30 mm inner diameter d2 is to transmit 100 KW between a turbine and a generator. Determine the minimum frequency at which the shaft can rotate, knov: ing that $G=77.2 \mathrm{GPa}$, that the allowable shearing stress is 60 MPa , and the angle of twist must not exceed 3°

Question Three: (20 Marks)

A single horizontal force P of 150 lb magnitude is applied to end D of lever ABD which shown in Fig. 2. Determine (a) the normal and shearing stresses on an element at point H having sides parallel to the x and y axes, (b) the principal planes and principal stresses at the point H.

Fig. 2

Ouestion Four:

 (20 Marks)The structure shown in Fig. 3 is constructed of a W10x 112 rolled-steel beam. (a) Draw the shear and bending-moment diagrams for the beam and the given loading. (b) Determine normal stress in sections just to the right and left of point D. For a W10x112 rolled steel shape, the section modulus equals 126 in 3 about the X-X axis.

Fig. 3

Ouestion Five: $\quad(20 \mathrm{Marks})$

Two steel plates of uniform cross section $10 \times 80 \mathrm{~mm}$ are welded together as shown in Fig. 4. Knowing that centric 100-kN forces are applied to the welded plates and that the in-plane shearing stress parallel to the weld is 30 MPa , determine (a) the angle β, (b) the corresponding normal stress perpendicular to the weld. (Using Mohr's circle)

Fig. 4

