Finite Element 600
M. Sc. Jun. 2017

Time allowed 3 hrs

OPEN BOOK

Question (1) (20%)

Two straight bars ab and bc are pinned together as shown. Bar bc is cooled $40^{\circ} \mathrm{C}$. Determine the displacement at b and the force in each bar. Thermal expansion coefficient $\alpha=1.2 \times 10^{-5} \mathrm{~mm} / \mathrm{mm}^{\circ} \mathrm{C}, \mathrm{E} 200,000.0 \mathrm{MPa}$.

Question (2) (20%)

Figure 2 shows two-member plane truss supported by a linearly elastic spring.
The truss members are of solid circular cross section having $\mathrm{d}=20 \mathrm{~mm}$ and $\mathrm{E}=80$ GPa. The linear spring has stiffness constant $50 \mathrm{~N} / \mathrm{mm}$.
a- Assemble the system global stiffness matrix and calculate the displacements at b.
$b-$ Calculate the reactions at a and c.
c- Calculate the strain and stress in each bar.

Question (3) (20\%)

For the beam shown in figure, use the stiffness method to :
a- Calculate the rotations at B.
b- Calculate the reactions at A and C.
c- Draw the shearing force and bending moment diagrams for the beam.
$\mathrm{E}=200 \mathrm{GPa}, \mathrm{I}=50 \times 10^{-6} \mathrm{~m}^{4}$.

Question (4) (20%)

Analyze the grid shown in figure. The grid is fixed at nodes 1 and 3, and is subjected to a downward vertical load of 24 kN . The global coordinate axes and element lengths are shown in figure. each member have the following property : $\mathrm{E}=210 \mathrm{GPa}, \mathrm{G}=84 \mathrm{GPa}, \mathrm{I}=16 \times 10^{-5} \mathrm{~m}^{4}, \mathrm{~J}=5 \times 10^{-5} \mathrm{~m}^{4}$

Question (5) (20%)

Using the finite element method to:
a- Calculate the approximate first buckling load for a cantilever beam of length $\mathrm{L}=3.0 \mathrm{~m}$, and $\mathrm{EI}=16 \times 10^{3} \mathrm{kN} . \mathrm{m}^{2}$.
b- Calculate the tip deflection and rotation of the cantilever beam when subjected to distributed transverse load of $12 \mathrm{kN} / \mathrm{m}$ along with a compression load of 1800 kN .
c- Compare the values of (b) with the values when $\mathrm{P}=0$.

Question (1)

$\underline{\underline{\text { Question (3) }}}$

Question (5)

