Menoufiya University Faculty of Engineering, Shebin El-Kom Production Engineering Department Date of Exam: 30 / 12 / 2017 Academic year: 2017-2018

Subject: Test of Materials Code: PRE 505 Year : Post Graduate Level 500 Time Allowed : 3 hours Total Marks : 100 marks

Answer the follow	ing questions						
(Question 1):			[20	Marks]			
a- Chose the corre	ect answer :		(1	0 Marks)			
1-If a material is su	bjected to two increa	mental true strains name	ely ε 1 and ε 2, then	the total			
true strain is							
(a) ε1* ε2	(b) ε1 - ε2	(c) $\varepsilon 1 + \varepsilon 2$	(d) ɛ1 /	(d) ε1 / ε2			
2-High elastic modu	ulus in materials aris	ses from					
(a) High strength	of bonds (b) Wea	ak bonds (c) combin	ation of bonds	(d) None			
3- According to dis	tortion-energy criter	ion, yielding occurs whe	en				
(a) Distortion er	nergy reaches a critic	cal value					
(b) Second inva	riant of the stress de	viator exceeded some c	ritical value				
(c) Octahedral s	hear stress reaches a	a critical value					
(d) All .							
4-Time dependent y	vield is known as						
(a) Fracture	(b) Fatigue	(c) Buckling	(d) Creep				
5-Most often machi	ne components fail	by					
(a) Buckling	(b) Creep	(c) Fatigue	(d) All				
6- Failure due to ex	cessive deformation	is controlled by					
(a) Material prop	erties (b) Design	n & Dimensions (c)	Both (d	l) None			
7-Brittle fracture is	more dangerous that	n ductile fracture becaus	se	·			
(a) No warning s	sign	(b) Crack propaga	ates at very high s	speeds			
(c) No need for e	extra stress during cr	cack propagation	(d) Al	1			
8-Fracture toughnes	ss is measured in terr	ms of					
(a) Strain energy	release rate (b) S	tress concentration factor	or (c) Both	(d) Non			
9- von Mises and T	resca criteria give di	fferent yield stress for					
(a) Uni-axial str	ess (b) Balanc	ed bi-axial stress (c	c) Pure shear stres	s (d) All			
10- Which of the fol	llowing materials ha	s the highest modulus o	f elasticity				
(a) aluminum	(b) diamo	ond (c)steel (d)titat	nium (e) tung	sten			
b- Describe in detail	the purpose and pro	ocedure for testing of m	etals for:	(10 Marks)			
(a) tensile stre	ength	b-	impact strength				

(Question 2):	[20 marks]							
a -What is meant by creep? Explain the different types of creep with the help	o of creep curve.?							
b-Mention the different methods of determining the hardness of a metal? State their advantages and disadvantages, Is there any relation between ha tensile strength?	(6 Marks) (6 Marks) ardness and							
c-Take two solid cylindrical specimens of equal diameter but different h	eights							
Assume that both specimens are compressed (frictionless) by the same percent								
reduction, say 50%. Prove that the final diameters will be the same.	(8 Marks)							
(Question 3):	[20 Marks]							
a- Differentiate between the following:	(12 Marks)							
1- Fracture of mild steel and cast iron specimens in tensile testing.								
2- Endurance limit and fatigue limit.								
3- Ductility and malleability.								
b-Estimate the depth of penetration in a Brinell hardness test using 500	-kg load,							
when the sample is a cold-worked aluminum with a yield stress of 200 M	Pa (8 Marks)							
(Question 4):	[20 Marks]							
a- Describe the effect of the following on fatigue	(8 Marks)							
(i) stress concentration on fatigue (ii) size	(
(<i>iii</i>) change of size of specimen and (<i>iv</i>) surface								
b- τ_{xy} = - 40MPa as shown in the figure. Using Mohr's circle determine the	following:							
(a)Stresses acting on an element inclined at an angle $\theta = 45^{\circ}$,								
(b)The principal stresses and ,								
(c)The maximum shear stresses . (12 Marks) $\rightarrow \uparrow$	$0 \xrightarrow{40 \text{ MPa}} x$							
	*							
(Question 5):								
(Question 5):	[20 Marks]							
(Question 5): a- Describe in detail the purpose and procedure for testing of metals for fat b- Knowing that $\varepsilon_x = 340 \times 10^{-6}$ $\varepsilon_y = 110 \times 10^{-6}$ $\gamma_{xy} = 180 \times 100^{-6}$	[20 Marks] igue. (8 Marks)							
(Question 5): a- Describe in detail the purpose and procedure for testing of metals for fat b- Knowing that $\varepsilon_x = 340 \times 10^{-6}$ $\varepsilon_y = 110 \times 10^{-6}$ $\gamma_{xy} = 180 \times 100^{-6}$ Determine the strains for $\Theta = 45^\circ$, principal strains, maximum shear strain . (12 marks)	[20 Marks] igue. (8 Marks)							
(Question 5): a- Describe in detail the purpose and procedure for testing of metals for fat b- Knowing that $\varepsilon_x = 340 \times 10^{-6}$ $\varepsilon_y = 110 \times 10^{-6}$ $\gamma_{xy} = 180 \times 100^{-6}$ Determine the strains for $\Theta = 45^\circ$, principal strains, maximum shear strain . (12 marks)	[20 Marks] igue. (8 Marks)							

This e	xam coi	ntribute:	s "by m	easuring	g'' in ac	hieving	Progran	nme Ac	ademic Standaro	ls acco	rding to	NARS	d sease	
Question Number	Q1,b	Q2- a,b	Q3-a	Q4,a	Q4,a	Q1-a	Q2-b,	Q3-b	Q4-b	Q1-	Q2-c	Q3-b	Q4 b	Q5
Skills	al-l	a1-2	a1-1 a2-1	a2-1	a 1-1	b4-1	b5-1	b5-1	b4-1 b5-1		c2-1	c1-1	c1-1	c2-1
	Knowledge & Understanding Skills				Intellectual Skills		Professional Skills							