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1 - ABSTRACT :

This paper studies the gprinciple structure of discontinous
control gystem using sliding mode technique. An approach of using
decomposition in the design process is atudied also.

A Sliding mode excitation controller for a synchronous
generator connected to an A-C transmisgion line is designed. This
type of controlier depends on the principle of discontinous

control.

Results obtained showed that this type of control improves
system stability & damps out transient torques appearing due to
series compensation on Ac lines, under different system operating
conditiong. '

2 - INTRCDUCTION

The optimal effect of the control action in discontinous
systems depends on the method used in control process. In these
systems the use of sliding wodes is very promising in the design
of control process. The wuse of sliding modes reguires special
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mathematical treatment, hence, the use of convenktienal theory of
differential equations is not applicable {3].

The use of sliding mode approach avoids the effects of
non-measured external disturbances and gives effective method to
obrain information about states and parameters of control system
[2].

Power system stability represents one of the important
problems for power engineers and planners. These, are however, due
to the large and complex power networks now-a-days. Several

methods are used to improve stability of single and complex power
systems {6}

The excitation control is an effective and low cost means for
improving system stability. Different methods of control are also
used for achieving this purpose. these include applying linear
optimal control theory to the excitation control, '

In this paper a sliding mode excitation controller is
suggested. This type of control depends on the principle of
discontinous control.

The controller is used to control a synchronous generator
connected to long O.H. transmission line with series compensation
and the far end is an infinite bus.

A simulation program used to obtain results for the system
under study., The results show that, such controller can be
effectively used to improve system stability. Results show
also that this controller is simple and easy to use.

3 - MATHEMATICAL FORMULATION.

Non linear systems are modeled by nonlinear differential
equation in the form;

x = f(x,t) + B{x,t).u (t) (1)
where;

X E R", is the state vector and u € K  is the control vector. It
has the following discontinuity on sowe surface 5(x),

*
>
u, = u, (x,t) Sl(x) 0 (1)
u, (x,t) §,(x) <0
where Gi, Gi, are time functions, while 5| i3 a continuous

function and differentialble.

In The above two equations the motions in the sliding mode
are not only possible along each discontinuity surface but along
their intersection and on S(x) = 0.

From the practical point of view, it has heen found that, [2]
some special intersecting lines when using the sliding mode on the
intersection of the discontinuity surface are requires to compose
the control systems with the- desired property. This is unique
feature and is really true, when eg. (1) and (2) are used. This is
because the right hand side of equation (1) is discontinous.
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To overcome this problem Ln the sliding mode, the equivalent
control concept is wused [3]. Therefore, the § wvector time
derivative 1is taken zero for system trajectories. Then, the
solution with respect to the equivalent control is substituted in
the initial equation as follows;

. d s
Defing G = ﬂ
Then 4
u = -~ (GB) Gf (3)
’q
x = £ - B(GB) Gf (4)
In case of equivalent contrel method § = O has conly one

solution [3], i.e. matrix [GB] 'exists.

Supposing that system of eq. (1) is exposed to the contrel
law {3) instead of contrel law (2), and the control wvector has all
nonlinearities considered, then function u has such character that
the sclution of (1) exists, and the motion of the sliding mode
tak e 5 place in the neighborhood of discontinuity surface

intersection

s = a, 4 small
Hence, for any finite time interval, it will be quite
pogsible to show that

lim x{t) = Xf(t)
A — 0
Where xf(t) is the solution of eq. (4),

From which i1t may be concluded that the sliding mode
repregentation is true.

If a condition of the controlled system is shifted leading to
the initiation of sliding motions, it may consider the condition
of multi sliding modes, which are either closely nearer to (s = 0}
or to the origin coordinates of m dimensional vector § = (si,..sm)

Congequently, the solution of the problem can be obtained by
any method used for solving system stability, for the following
equaticn of subsurface

s =Cf+GCBu ' (5)

Solutien of eq. (5) wusing standard methods, wused for
stability solutions is not effective, therefore, it is useful to
consider particular conditions. These conditions depend on the
maurix GB in eq.(5) according to its nature which may be, diagonal
one with dominant diagonal and symmetrical one.

4 - DECOMPOSITION OF THE SYSTEM:

As mentioned in the previous section, the nature of the
sliding mode does not depend on control mechanism, but it depends
on the elements of the matrix (. These however, contain the
gradient of, S, The motion of the sliding mode can be affected by
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changing the position of the switching surface within the state of
the system.

The sliding mode can be described by (n - m)equations imstead
of n. That 15 because, any system satisfying S(x) = 0, and have m
alternates, can be expressed by the remaining (n - m).

Hence, the order of the system is reduced using sliding mode
concept and the system 1is decomposed into twe independent
subsystems of smaller dimensions. This simplifies analytical study
and reduces computer computations.

The decomposition methodology can be summarized in the
following steps;

1 - The switching surfaces are chosen to provide the motion in the
sliding mode with the desired properties.

. + - .
2 - Funcktion u, and uare chosen such that, they insure the

existence of the mode, through the switching surfaces $(x)= 0,
3 - The conditions which will allow the representative point to
slide on the switching suxfaces are provided. These points
must belong to analytical position to hit this surface.
To illustrate this method, the second order system described
by the following equations is considered:

X =AX+Bu (6)
and U =T x .F = const.

To compose this system within the sliding mode the equation
(6) is first expanded to;

X = x + A X
1 AH i 12 2

N
Xx =4 x + A _ s + B u
2 21 1 22 72 2
where x1€ R" " xze R" and |BZ| * 0
Transformation of coordinates for the case of rank B = m is always
possible [2], if

§ = ¢x or in this example 3§ =Cix1 + %,

For sliding mode in the vicinity of § = 0 and substituting we have
= - )

% (A11 A1201‘x1 (8)
For controlled system (6), the roots of equation (8) can be
arranged in the desired way [2].

The second step 1s to choose the type of control to provide
the decomposition of the sliding mode in the vicinity of § = 0 as
follows:

(a) Design u as @2 discontinous function of the state vector

4
= - a xt B sign
u | x} , sign S
Where; a is coastant, [x| is the sum of modules of states X, & x

2

and sign § 1s the vector with the components sign S1 ( S1

components of vector S).
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(b) Compute the time derivative of vector § = C1x1+ X, w.r.to time

trajectories of the system (8), so,the following equation is
deduced;

§ = (CA .+ A Ix+ (CA + Azz?xz - a |x| sign 8 (9

5 - INVARIANCE O¥ SYSTEMS WITH SLIDING MODE.

Invariance means that, the system, behavior is independent on
external disturbances, and the equation describing this system is;

x = Ax + Bu + Df (103

Where f is the external disturbance

In this case, it is necessary to choose the contfol u such
that, the solution of eq.(i10) becomes independent on vector
disturbance f(t), where £ € R . Assuming that, the space of the
disturbance belongs te the space of control. i.e. D =B Z, where 2
is a certain (m x 1) matrix. Then, the equation of the sliding
mode for § = Cx =0 1is independent on disturbances. Using the
equivalent control concept U.qcan be obtained from the equation

é =CAx+CB u.q+ CDEf =20
And therefore;

U = - (B GAx- (CB) GO E. (11)
Substi;Lting U into eq.(10) with regard to

D =B z yields:

x = [A-B (CB)'C A ]x. (12)
which provides the sliding mode invariance towards disturbances.

The spaces must be be chosen carefully,

6 - RESTORATION OF THE STATES AND THE PLANT PARAMETERS

In the above control algorithms the whole states are
congidered available, and this 4s not true. Therefore, in this
section an algorithm in which some states are only available is

deduced. The measured states are in the form:

k . g
y = X, y € R and the system 1n the sliding mode takes
the form
x = Ax + Bu + L sign (C x - y) (13)

where x € R", Sign (Cx - y) € R*
considering the error equation in the form

e =x - x
Solving equations (6) and (13) yields;
e = A e+ L sign§, S =Ce (14)
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As far as the right side in (14) undergoes discontinuities in
the vicinity of s = 0, the sliding mode may appear if the pair A
and C is an observed one [3]. If such L matrix exists it would be
possible to secure the homogeneous system stability.

As it follows from the stability factor 1im e = 0 as t —
then, lim x = x at &t — e, this solves the problem. It 1is
important that, 1f the disturbances appear in the observations,
friter is almost optimal (l4), as well as, the filtration of their
statistic characteristics, even, of their variation is unknown,

Considering another restriction, related to the realization
of the synthesis procedure, described in [2]. When some parameters
of the plant object (or matrices A and B) in eq. (6) are unknown
and will fail to obtain the control invariance for these
parameters, it is necessary to make their identification either to
select the controlling impacts or to organize the adaptation
process.

The solution of the identification problem most often
supposes the use of models with continuous algorithms, whose
states and parametevs converges with the states and parameters of
the plant {4}.

constructing the model;

x=Ax +B u+v, v =WUx+ Tu is an additional control
m [} a ¥ u
signal With the coefficients of matrices W and wu which undergoes
discontinuities on the planes, if the vicinity of § =x - x = 0, is

formed, the sliding mcde allows to obtain the identical equality

of the model and the object states vectors and thus, to simplify

to a major extent, the algorithms of matrices A and B alternation.
L] =

According to {3) the procedures of the model parameters
reconstruction.
T T .
A =-2vx, B =-Xvu, A 1s constane
L] L]

This allows to fulfill identification of all parameters of the
linear object [4].

7 - APPLICATYION EXAMPLE

To check the suggested method, a synchronous generator
connected to an infinite bus through a long series compensated
transmission line isg considered. The transients in the synchronous
machine stator are neglected for simplification.

The following equations describing the generator in d, gq
reference frame are taken [1,9]

P§ = un S {15.a)
MPS =-K §+T -T (15.5)
Pe =V - (x -x )I -ce (15.¢)

do q 1 d d d q
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d d s d a g
e=V +1r I +x I
q q " q d
T =e¢ I -(x -x)TI I
. q q ( d q) d g

Vo= v v
t d q

The equation describing the transmission system is
V=V gind+r I -x I
d ] vw d f q
V =V ¢cos §+r I +x I
q b s g . 4

Where, Vbis the bus voltage and r , x are

(15.
(15,
(i5.

(15.

(15.
(15.

d)
e)
f)

g)

h)
i}

transmission 1line

resistance and reactance. The equations of the excitation control

is;

TPV =u -V

. f f
Linearizing equations
point yields;

* 11 12 * B
= + A u
x X 0
2 24 22 2
A v = 5 X
t 2
Where x, and %, represent the state vector and

respectively, which is;

x = (66 &S Adq & vf]',

The values of A”, A1z’ Azt’ and Azz are found to be.
[0 & 0 0 ] [ -X 1
0 a q
A = - - = | x
. 0 K /N Iqﬁ“ 0 A, x, Tt 0
0 0 —I/Tdn l/Tdo X -1
0 0 it -1/T x r
B ° | [ » ' 0

non

(15,

[15.a) to [15.]) about an initial operating

(15.

»

k)

state

. . T
= & A
x, (& i, 1q vy A vq]



E. 49 Sabry F. Saraya

( ¢ 0 0 0 1 ( 0
¢ g -1 0 -
By A= (xd_xq)Iqo
Vcosd O 0 0 M
b )
-vsind 0 0 0 a7 %
b 0 =
| Td
— . U
0
The values of 8 and C are
B=(0 0 0 1)
¢ = [0 0 v /vE, Vq /VE )

and _ .
€q,™ eq, - (xd - xd) IdD

using the elementary matrix reduction

x, = A X, + B Au
AV =0 x
t 1 y
where A = [A”— A12A22A21]
= -1
¢ =-¢ ‘qzz A21

-eq /M

{15.
(15.
{(i5.

(15.

It is interesting to note that if no resistance exists in the

stator circuit (r= r= ()

generator, then i ) 60= ‘$a= g, Vq: Vtﬂ,
Eg. (15.n, 15.0) become,
0 © 0
0
-e V -K
A = 99 b ¢ 0
M{x + x ) M
q ]
0 0
L 0 0
T
B = [0 0 0 l/T.] ) C =

and

and no active power is

matrices

sent by the

A B,C 1IN
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Thus the 4th order system is neither completely controllable nor
completely observable under this condition.

The results of fig. (1) show that, the terminal voltage
effectively follows the change of set point and only low amplitude
oscillations occur, but it soon damped.

The system in this case is suffering from the problem of S8R
(system stability under subsynchronous resonance effect)due to the
‘series compensation, These are possible by increasing the
compensation percentage. It is seen from fig. (1) that,the system

transients are well improved to a large extent,

8 - CONCLUSIONS

The analysis and principles of discontinous control
using sliding mode technique are studied. An approach of using
decomposition in the design process is also shown.

We have presented a new approach to the design of composite
controller for synchronous generator based on sliding mode
technique.

It is demonstrated by computer simulation that for the change
of generator power, terminal voltage and torque angle, the
controller has acceptable performance. By using controller the
generator can be coperated at the transmission power limit, thus
the power system steady state stability can be improved to the
maximum,
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DEFINITIONS

4] = Torgue angle

o

@, = Synchroncus frequency

M = Inertia constant

K, = Damping coefficient

T., T. = Mechanical and electric torgue

5 = Slip~

éd, éq = Direct and quadrature transient voltages
v = Field voltage

x, ¥ = Direct and quadrature axis reactances

id, x = Transient reactances
[
I Iq = direct and quadrature stator currents
Vo V= Direct and gquadrature voltages
q
Vb = Bus voltage
v = Terminal voltage

r , r = Armature and fransmissicon resistances
&  J

System datza

ro= 0 K, = 3

= 1.904 Tdu = 5.66 sec
;dz 0.312 T, = 0.065

x, = 1.881 M = 5.529

x = 0.26



