Third Year Time: 3 Hours Marks: 100 Date: 20/01/2014

ANSWER ALL THE FOLLOWING QUESTIONS:

Q1: Consider the block diagram of a system shown,

[20 Marks]

- a- Determine the transmittance;
- b- Check the result by using S.F.G.
- c- If one choose at r(t)=1; $G_1(s)$, $G_2(s)$, $G_3(s)$, $H_1(s)$ and $H_2(s)$ such that;

$$\frac{C_{(s)}}{R_{(s)}} = \frac{(S+20)}{S^2 + 7S + 25}$$

- 1. Determine ζ , ω_n , τ , M_p , t_p , t_r and t_s .
- 2. Determine ess.

Q2:

[10 Marks]

a. Examine the stability of the system whose characteristic equations;
1.
$$S^4 + 2S^3 + 3S^2 + 6S + 1 = 0$$

2.
$$S^3 + S^4 + 4S^3 + 4S^2 + 2S + 2 = 0$$

b. Determine the condition of K to stabilize the system whose characteristic equation;

$$2S^4 + 2S^3 + 5S^2 + S + k = 0$$

Q3: The open loop transfer function of a control system;

[15 Marks]

[15 Marks]

$$G_{(s)}H_{(s)} = \frac{K(S-1)^2}{(S+5)(S+3)^2}$$

- a- Plot the Root Locus.
- b- Determine K_{cr} and ω_n .
- c- Discuss the conditionally stability of the system.

Q4: The overall transfer function of 6 control systems are;

1.
$$\frac{C_{(s)}}{R_{(s)}} = \frac{1}{S(S+1)(S+2)}$$

2. $\frac{C_{(s)}}{R_{(s)}} = \frac{S+3}{(S+5)(S^2+2S+2)}$
3. $\frac{C_{(s)}}{R_{(s)}} = \frac{S^2+S+4}{(S-0.01)(S+10)(S+100)}$
4. $\frac{C_{(s)}}{R_{(s)}} = \frac{K}{(S^2+1)(S+3)}$
5. $\frac{C_{(s)}}{R_{(s)}} = \frac{2S+5}{(S^2+2S+5)(S+0.2)}$
6. $\frac{C_{(s)}}{R_{(s)}} = \frac{3S^2+1}{(S^2-2S+5)(S+200)}$

Choose the correct answer from a and from b:

- a. The resultant time characteristic is:
 - 1. step,
 - 2. exponential decay,
 - 3. damped oscillation,
 - 4. sustained oscillation,
 - 5. exponential rise,
 - 6. grow-up oscillation.

Put the answer in the form:

- b. the system stability is:
 - 1. stable,
 - 2. conditionally stable,
 - 3. critically stable,
 - 4. unstable.

	System 1	System 2	System 3	System 4	System 5	System 6
а						
b						

5- For the third order servomechanism shown in the figure. It is required that the steady state error be 0.1 of the final output velocity and the phase margin be 50°. Design the required compensator and find the suitable values of R_1 , R_2 and C to satisfy the above condition.

6-A. A linear multivariable system is described by the following set of differential equations:

 $y_1^{\bullet \bullet} + y_1^{\bullet} + 2 y_1 - 2 y_2 = U_1$ $y_2^{\bullet \bullet} - y_1 + y_2 = U_2$

i- Write the state equations of the system in matrix vector form ii- Write the output equation of the system in matrix vector form iii- Find the transfer matrix between output vector and input vector

B. A closed loop multi-input multi-output system has a plant transfer matrix

$$G_{p}(s) = \begin{vmatrix} \frac{1}{2s+1} & 0\\ 1 & \frac{1}{s+1} \end{vmatrix}$$

Determine the transfer matrix of the series compensator such that the closed loop matrix is:

$$G_{c.L}(s) = \begin{bmatrix} \frac{1}{s+1} & 0\\ 0 & \frac{1}{5s+1} \end{bmatrix}$$

C. Consider the linear system whose Transfer function

$$\frac{Y(s)}{U(s)} = \frac{S + Z_1}{S^2 + 3S + 2}$$

Determine the values of the parameter Z_1

For which the system is both state Controllable and observable

[20 Marks]