## EFFECT OF MINERAL, BIO AND ORGANIC NITROGEN FERTILIZATION ON WHEAT YIELD AND NITROGEN UTILIZATION EFFICIENCY AND UPTAKE AT NORTHERN DELTA OF EGYPT.

Mosaad, I. S. M.; E. E. E. Khafagy and R. A. El-Dissoky Soil, W-ater and Environ. Res. Inst., ARC, Giza, Egypt. dribrahim1981@yahoo.com

## ABSTRACT

Effect of organic fertilizer as compost (20 m<sup>3</sup> fed<sup>-1</sup>), N-biofertilization (cyanobacteria Azospirillum, Azotobacter inoculations and mix of previous inoculations) and mineral nitrogen fertilization application rates (0, 30, 60 and 90 kg N fed<sup>-1</sup>) on wheat grain and straw yields, N-uptake and nitrogen utilization efficiency (NUtE) were studied for wheat crop (Triticum aestivum, L.), variety Sakha 93. Two field trials at El-Serw Agricultural Research Station, Dammietta governorate through winter season 2011/2012 and 2012/2013 were conducted. The results showed that wheat grain and straw yields and N-uptake in grain and straw increased with use of mineral fertilizer rates up to 90 kg N fed<sup>-1</sup>, but N utilization efficiency for wheat crop was decreased. As well as these results showed that a mixture of bio-fertilizers, cyanobacteria, Azotobacer and Azospirillum inoculations, respectively gave the highest values of the previous parameters except the NUtE, where the order of values was upward with the order of the previous inoculations. Also, the results showed that the use of organic fertilizer as a compost gave the highest values of wheat grain and straw yields and N-uptake in grain and straw and the lowest values of NUtE. Organic fertilizer + a mixture of bio-fertilizers + 90 kg N fed<sup>-1</sup> gave the highest wheat grain and straw yields and N-uptake and gave the lowest N utilization efficiency. In addition, applying organic fertilizer + mix or BGA or Azotobacer inoculation could produce economic wheat grain and straw yields when it combined with 30 kg N fed<sup>-1</sup> and in the same time, this treatment gave high N utilization efficiency and thus saves in mineral fertilization, which may lose when applying the full recommended dose and conserves environment by reducing pollution hazards.

**Keywords:** Wheat, cyanobacteria, *Azospirillum, Azotobacter*, compost, organic fertilizer, nitrogen utilization efficiency, N-uptake, mineral nitrogen fertilization.

## INTRODUCTION

Wheat (*Triticm aestivum, L.*) is considered one of the most important cereals crop in Egypt. The amount needed from it is greater than that locally produced. Therefore, increasing its productivity as well as cultivated area is highly recommended.

Plants show dramatic response to nitrogen additions, since nitrogen is a major building block of amino acids and proteins (Wilkinson, 2000). Fertilization of wheat is an important limiting factor affecting wheat production. Results of many researchers that achieved in Egypt revealed that nitrogen fertilizer levels significantly affected most of plant growth traits, yield and its components. The optimum nitrogen fertilizer levels for wheat vary widely in amounts, it was ranged between 70 and 120 kg N fed<sup>-1</sup> according to

environmental conditions (Tammam and Tawfils, 2004; Salem, 2005 and Mansour and Bassiouny, 2009). Application of very high nitrogen rate can reduce grain yield by increasing lodging and disease incidence.

Bio-fertilizers assume special significance particularly because they are eco-friendly and because of their alternative chemical fertilizers are expensive (Kannaiyan, 2003 and Choudhury and Kennedy, 2004). Cyanobacteria may increase yields by providing the crop with N, possibly by producing growth-promoting substances and improving P availability and soil properties (Roger, *et al.*, 1980; Abd El-Fattah *et al.*, 1999 and Mosaad, 2005). Also, Azospirilla are free-living rhizobacteria that are able to promote plant growth and increase yields of many crops of agronomic importance (Bloemberg and Lugtenberg, 2001 and Dobbelaere *et al.*, 2001). Inoculation of wheat plants with *Azospirillum spp.* resulted in significant increases in grain yield and total nitrogen yield (Tarrand *et al.*, 1978; Baldani *et al.*, 1983, 1987 and Kapulnik *et al.*, 1983).

Organic manures have long been used in agriculture as they provide plant nutrients and improve biological and thus the physical properties of soils (Poincelo, 1975 and Vaughan and Ord, 1985). The use of organic manures has declined recently, in favour of highly plant available inorganic fertilizers. There has been a renewal of interest in the use of organic manures as a source of plant nutrients (Parsons, 1985), due to dwindling non-renewable resources and increasing energy costs involved in the manufacture of inorganic fertilizers (Chen and Avenimelech, 1986). Furthermore, adverse effects on environmental quality due to the excessive use of fertilizers are increasingly being recognized. In present, low N and P contents are hampering the widespread use of organic manures such as compost although these are relatively rich in micronutrients (Stevenson and Ardakani, 1972) and may improve the physical properties of the soil (Simpson, 1983). Zein et al., (2000), Shoman et al., (2006) and El-Sirafy et al., (2012) observed that wheat yields were significantly affected by adding organic fertilizer. Also, Tuttobene, et al., (2009) showed that organic fertilization gave similar wheat yields to the compared mineral fertilization, averaging at 3.63 t/ha.

EI-Hamdi *et al.*, (2012) showed that adding 40 kg N fed<sup>-1</sup> of nitrogen fertilizer mixed with Azotobacter + Asospirillum in presence of humic acid (50 L fed<sup>-1</sup>) gave the highest value of grain and straw yields, N, P and K uptake. EI-Sirafy *et al.*, (2012) showed that wheat yield components have been increased by applying organic manure, bio-treated compost along with N, P, K and Zn mineral fertilization.

The aim of this investigation is to study the combined effect of using organic fertilizer as compost, mineral nitrogen and biological nitrogen fixation (BNF) on wheat grain and straw yields and N-uptake and utilization efficiency.

## MATERIALS AND METHDOS

Two field trials were performed at EI-Serw Agricultural Research Station, Damietta Governorate during the two winter seasons of 2011/2012 and 2012/2013. Split Split Plot design with four replications was conducted to study the effect of using organic fertilizer as compost treatments (the main plots) i.e.  $O_0$ , without organic fertilizer and  $O_1$ , with organic fertilizer at a level of  $20m^3$  fed<sup>-1</sup> of mature compost rice straw and farmyard manure, the various N<sub>2</sub>-biofertilizers (I<sub>0</sub>, control without inoculation, I<sub>1</sub>, cyanobacteria, I<sub>2</sub>, *Azotobacter*, I<sub>3</sub>, *Azospirillum* inoculations and I<sub>4</sub>, Mix from previous inoculations) were added in the sub plots and mineral nitrogen fertilizer levels were added in the sub subplots, e.g. N<sub>0</sub>, 0, N<sub>30</sub>, 30, N<sub>60</sub>, 60 and N<sub>90</sub>, 90 kg N fed<sup>-1</sup>, on wheat growth and nutrients uptake.

Wheat seeds, CV. Sakha 93, were sowed on 20<sup>th</sup> November 2011 in 1<sup>st</sup> season and on 25<sup>th</sup> November 2012 in 2<sup>nd</sup> season. Wheat harvesting was done on 25<sup>th</sup> April 2012 and 1 May 2013 in both seasons, respectively.

Soil samples were taken from the experimental field before conducting from soil layer (0-30cm depth), then air-dried and ground to pass through 2 mm sieve. Soil physical and chemical properties were carried out according to Piper (1950) and Jackson (1967) as shown in Table 1. EC, cations and anions were estimated in 1:5 soil water extract, where PH was measured in soil water suspensions (1:2.5).

 Table 1: Some physical and chemical properties of soil before wheat cultivation in seasons 2011/2012 and 2012/2013.

|                   | Particle size distribution%                                           |                  |        |       |      |                  |         |            | C.E.C                       |                     |                          |  |  |
|-------------------|-----------------------------------------------------------------------|------------------|--------|-------|------|------------------|---------|------------|-----------------------------|---------------------|--------------------------|--|--|
| Growing<br>season | Coarse<br>sand                                                        | Fine<br>sand     | Sil    | t Cla | av   | exture<br>lass   | ОМ<br>% | CaCO₃<br>% | (meq<br>/100g<br>soil soil) | PH                  | EC,<br>dSm <sup>-1</sup> |  |  |
| 1 <sup>st</sup>   | 1.44                                                                  | 10.35            | 5 22.2 | 6 65. | 95 C | layey            | 0.86    | 1.34       | 42.3                        | 8.0                 | 2.41                     |  |  |
| 2 <sup>nd</sup>   | 1.09                                                                  | 11.23            | 3 21.6 | 66.   | 01 C | layey            | 0.75    | 1.41       | 44.1                        | 8.0                 | 2.32                     |  |  |
| Growing           | Cations and anions in the soil water extract (1:5),<br>meg/100 g soil |                  |        |       |      |                  |         |            |                             | NPK available (ppm) |                          |  |  |
| season            |                                                                       | Catio            | ons    |       |      | Ani              | ons     |            | N                           | K                   |                          |  |  |
|                   | Ca <sup>⁺⁺</sup>                                                      | Mg <sup>++</sup> | Na⁺    | K⁺    | CO3- | HCO <sub>3</sub> | CI      | SO4        | IN                          | Р                   | к                        |  |  |
| 1 <sup>st</sup>   | 3.11                                                                  | 2.69             | 11.40  | 0.28  |      | 1.70             | 12.2    | 21 3.68    | 33                          | 7.94                | 479                      |  |  |
| 2 <sup>nd</sup>   | 2.95                                                                  | 2.81             | 11.21  | 0.27  |      | 1.59             | 12.0    | 2 3.63     | 31                          | 8.01                | 483                      |  |  |

Mature compost (rice straw and farmyard manure) (20m<sup>3</sup> fed<sup>-1</sup>) were added to the soil and mixed with the upper layer before planting.

#### Table (2): Analysis of compost in 2011/2012 and 2012/2013 seasons.

| Season    | pН   | EC, dS/m<br>at 25 °C | 0.C.<br>% | Total N<br>% | Total P<br>% | C/N   |
|-----------|------|----------------------|-----------|--------------|--------------|-------|
| 2011/2012 | 7.55 | 2.90                 | 29.91     | 1.59         | 0.25         | 19.07 |
| 2012/2013 | 7.53 | 2.87                 | 29.81     | 1.57         | 0.28         | 19.15 |

Nitrogen fertilizer was added in the form of urea (46% N) at two equal doses. The first dose was added before the first irrigation and the last dose was added before the second irrigation. Calcium superphosphate fertilizer (15% P2O5) was added at the rate of 100 Kg/fed as basal of each plot before ploughing.

The blue-green alga (Cyanobacteria) was provided from soil Microbiology Department at Soil, Water and Environmental Institute, ARC, Giza. N<sub>2</sub>-fixing bacteria (*Azospirillum spp, Azotobacter sp.* and Mix

inoculation) were provided from the Soil, Water and Environmental Institute, ARC, Giza. Bacterial inoculation was performed using seed coating technique by ARC recommendations as follows, the seeds were classified into 5 groups for biofertilization and seed coat procedures before that, it washed to avoid anti-fungus effects then air dried and mixed with a microbial adhesive and then mixed by the biofertilization inoculants separately in a (30 min) shadow place.

After wheat harvest, grain and straw yields and N-uptake (N-uptake kg fed<sup>-1</sup> = (N% \* the yield kg. fed<sup>-1</sup>) / 100) in grains and straw were recorded. Also the Nitrogen utilization efficiency for wheat crop was calculated.

N utilization efficiency NU<sub>t</sub>E (Sowers *et al.*, 1994, Fiez *et al.*, 1995 and Bellido, *et al.*, 2005) for wheat grain production is equal to grain yield per unit of total N uptake. N utilization efficiency was calculated as follows:

 $NU_tE$  kg grain yield per kg N-uptake= Grain Yield (kg fed<sup>-1</sup>)/ Total aboveground plant (grain + straw) N uptake (kg fed<sup>-1</sup>).

The statistical analysis was carried out according to Steel and Torrie (1980) to compare the treatments values.

## **RESULTS AND DISCUSSION**

#### Wheat grain and straw yields (ton fed<sup>-1</sup>).

Table 3 and Figs. 1, 2, 3 and 4 pointed out that adding nitrogen fertilizer significantly affected on wheat grain and straw yields (ton fed<sup>-1</sup>) by increasing nitrogen rate up to 90 kg N fed<sup>-1</sup>. Also, data showed that yields significantly were affected by biofertilization inoculation treatments and, the order of nitrogen biofertilization inoculations for their influence on wheat grain and straw yields was as follows: Mix from (BGA + *Azospirillum sp.* and *Azotobacter sp.* Inoculations) > blue green algae (cyanobacteria) > *Azotobacter sp.* Inoculation > *Azospirillum sp.* inoculation. In addition, there was significant increase in wheat grain and straw yields by using organic fertilizer treatments in both seasons 2011/2012 - 2012/2013 and the data showed that the highest result of wheat grain and straw yields was obtained with organic fertilizer treatment. Kapulnik *et al.*, (1983), Vaughan and Ord, (1985), Tammam and Tawfils, (2004), Mosaad, (2005) and Salem, (2005) reported similar results.

The effect of interactions among organic fertilizer as compost, N-biofertilization Inoculations and nitrogen application rates were showed in Table 3. These interactions (I\*O, N\*I and N\*I\*O) in both seasons and (N\*O) in  $2^{nd}$  season significantly affected on wheat grain and straw yields, but the interaction (N\*O) in  $1^{st}$  season was no significant on previous variance.

Data in Table 3 and Figs. 1, 2, 3 and 4 show the interaction effect between nitrogen application rates, N-biofertilization Inoculations and organic fertilizer treatments. This interaction effect on wheat grain and straw yields was significantly in both 1<sup>st</sup> and 2<sup>nd</sup> seasons. Table 3 and Fig 1 and 2 showed that the highest values for grain yield (ton fed<sup>-1</sup>) in 1<sup>st</sup> and 2<sup>nd</sup> seasons were obtained with  $O_1I_4N_{90}$  (3.813 and 4.179),  $O_1I_1N_{90}$  (3.688 and 3.994),  $O_1I_2N_{90}$  (3.513 and 3.778),  $O_1I_4N_{60}$  (3.440 and 3.773),  $O_0I_4N_{90}$  (3.436 and 3.610),  $O_1I_3N_{90}$  (3.338 and 3.514),  $O_0I_1N_{90}$  (3.300 and 3.475), respectively. At the

#### J. Soil Sci. and Agric. Eng., Mansoura Univ., Vol. 4 (10), October, 2013

same time, grain yield was obtained by  $O_1I_4N_{30}$  and  $O_0I_1N_{60}$  in both seasons and  $O_1I_2N_{60}$  at 2<sup>nd</sup> season, more than that obtained from  $O_0I_0N_{90}$ . So that, when applying organic fertilizer as compost (20 m<sup>3</sup> fed<sup>-1</sup>) + cyanobacteria inoculation or *Azotobacter sp.* Inoculation + 60 kg N fed<sup>-1</sup> can be given an economic yield, but with using organic fertilizer as compost (20 m<sup>3</sup> fed<sup>-1</sup>) + Mixture inoculation (cyanobacteria + *Azotobacter sp.* + *Azospirillum sp.*) + 30 kg N fed<sup>-1</sup> can two-thirds of mineral nitrogen fertilization is enough, whereas the recommended rate of nitrogen fertilization under the same condition is 90 kg N fed<sup>-1</sup>. It is very important from the economical point of view.

|                | and organic fertilizer on wheat grain and straw yields (ton fed <sup>-1</sup> ). |     |                       |            |            |            |                |            |                       |            |
|----------------|----------------------------------------------------------------------------------|-----|-----------------------|------------|------------|------------|----------------|------------|-----------------------|------------|
|                |                                                                                  |     | G                     | irain yiel | d (ton fe  | d⁻¹)       |                | / yield    | (ton fe               | ed⁻¹)      |
|                | Treatm                                                                           | ent | 2011/2012             |            | 2012       | /2013      | 2011/2         | 2012       | 2012/2013             |            |
|                |                                                                                  |     | <b>O</b> <sub>0</sub> | <b>O</b> 1 | <b>O</b> 0 | <b>O</b> 1 | O <sub>0</sub> | <b>O</b> 1 | <b>O</b> <sub>0</sub> | <b>O</b> 1 |
|                | Co                                                                               | nt. | 1.460                 | 1.898      | 1.497      | 2.000      | 1.912          | 2.513      | 1.968                 | 2.740      |
| I <sub>0</sub> |                                                                                  | 30  | 1.898                 | 2.208      | 1.948      | 2.343      | 2.513          | 2.880      | 2.604                 | 3.276      |
| •0             |                                                                                  | 60  | 2.420                 | 2.488      | 2.496      | 2.645      | 3.277          | 3.462      | 3.419                 | 3.744      |
|                | N                                                                                | 90  | 2.940                 | 2.995      | 3.038      | 3.155      | 4.060          |            | 4.178                 |            |
|                |                                                                                  | nt. | 2.080                 | 2.458      | 2.171      | 2.641      | 2.720          | 3.255      | 2.854                 | 3.617      |
| I <sub>1</sub> | N                                                                                | 30  | 2.565                 | 2.890      | 2.687      | 3.114      | 3.399          | 3.907      | 3.591                 | 4.353      |
| 1              | N                                                                                | 60  | 2.815                 | 3.108      | 2.959      | 3.361      | 3.811          |            | 4.053                 |            |
|                | N                                                                                | 90  | 3.300                 | 3.688      | 3.475      | 3.994      | 4.556          | 5.195      | 4.779                 | 5.538      |
|                | Co                                                                               | nt. | 1.908                 | 2.135      | 1.976      | 2.275      | 2.500          | 2.831      | 2.600                 | 3.116      |
| la la          | I <sub>2</sub> N <sub>30</sub> N <sub>60</sub>                                   |     | 2.238                 | 2.535      | 2.323      | 2.710      | 2.966          |            | 3.104                 |            |
| 12             |                                                                                  |     | 2.703                 | 2.930      | 2.813      | 3.148      | 3.658          |            | 3.853                 |            |
|                | N <sub>90</sub>                                                                  |     | 3.130                 | 3.513      | 3.265      | 3.778      | 4.321          | 4.947      | 4.490                 | 5.239      |
|                | Cont.                                                                            |     | 1.803                 | 2.075      | 1.831      | 2.172      | 2.362          | 2.754      | 2.408                 | 2.975      |
| I <sub>3</sub> | N                                                                                | 30  | 2.155                 | 2.448      | 2.150      | 2.565      | 2.800          |            | 2.873                 |            |
| 13             | N                                                                                | 60  | 2.600                 | 2.765      | 2.652      | 2.905      | 3.517          | 3.849      | 3.633                 | 4.111      |
|                |                                                                                  | 90  | 2.965                 | 3.338      | 3.036      | 3.514      | 4.098          |            | 4.175                 |            |
|                | Co                                                                               | nt. | 2.175                 | 2.685      | 2.292      | 2.931      | 2.849          | 3.561      | 3.013                 | 4.014      |
| I۵             | N                                                                                |     | 2.738                 | 3.005      | 2.890      | 3.286      | 3.628          | 4.050      | 3.862                 | 4.594      |
| •4             |                                                                                  | 60  | 3.003                 | 3.440      | 3.176      | 3.773      | 4.060          | 4.791      | 4.351                 | 5.340      |
|                |                                                                                  | 90  | 3.436                 | 3.813      | 3.610      | 4.179      | 4.745          |            | 4.964                 |            |
|                | F. tes                                                                           |     |                       | **         | **         |            | **             |            | **                    |            |
|                | LSD 5                                                                            |     | -                     | 073        | 0.095      |            | 0.104          |            | 0.134                 |            |
|                | LSD 1                                                                            | %   |                       | 096        |            | 26         | 0.138          |            | 0.177                 |            |
|                |                                                                                  | N   |                       | **         |            | *          | **             |            | **                    |            |
|                |                                                                                  | I   |                       | **         |            | *          | **             |            |                       | *          |
|                | test                                                                             | 0   |                       | **         |            | *          | **             |            |                       | *          |
| '              | . 1631                                                                           | I*O |                       | **         |            | *          | **             |            |                       | *          |
|                |                                                                                  | N*O |                       | **         |            | *          | ns             |            |                       | k          |
|                |                                                                                  | N*I |                       | **         | *          | *          | **             |            | *                     | *          |

| Table3:Effect of | interactions     | among   | nitrogen  | rates, | N-biofertilization               |
|------------------|------------------|---------|-----------|--------|----------------------------------|
| and organ        | nic fertilizer o | n wheat | grain and | straw  | vields (ton fed <sup>-1</sup> ). |

\*Significant at 5% level.

\*\* Significant at 1% level.

 $O_0$  = without compost.

 $I_0$  =without inoculations.  $I_3$  = *Azospirillum*.  $O_1$  = with compost.  $I_1$  = Cyanobacteria.

I<sub>4</sub>= Mixture from I<sub>4</sub>+I<sub>2</sub>+I<sub>3</sub>

I<sub>2</sub> = Azotobacter.

In addition, the use of mix with some N-biofertilizations and organic fertilizer conserves the environment by reducing pollution hazards caused by leaching nitrate in the drainage water and through volatilization of  $NH_3$  gas from  $(NH_4)_2$  SO<sub>4</sub> and CO( $NH_2$ )<sub>2</sub> fertilizers and also, nitrogen oxides envolved during denitrification processes. As soon as, results showed that applying compost (20m<sup>3</sup> fed<sup>-1</sup>) + mixture inoculation or Cyanobacteria inoculation or *Azotobacter* inoculation + 90 kg N fed<sup>-1</sup> recorded the highest value for straw yield in both seasons. Similar results were obtained by Hammad *et al.*, (2011), El-Hamdi *et al.*, (2012), El-Sirafy *et al.*, (2012).

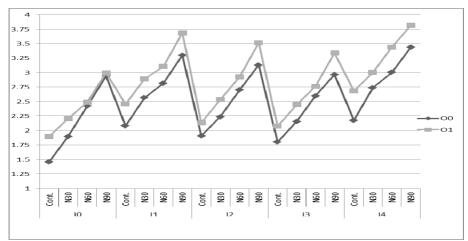



Fig. 1: Effect of interactions among nitrogen rates, N-biofertilization and organic fertilizer on wheat grain yield (ton fed<sup>-1</sup>) in 2011/2012 season.

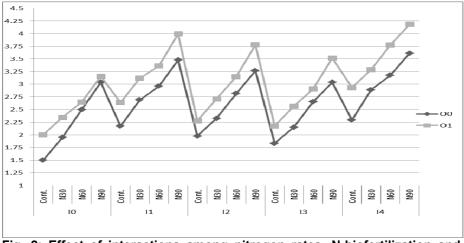



Fig. 2: Effect of interactions among nitrogen rates, N-biofertilization and organic fertilizer on wheat grain yield (ton fed<sup>-1</sup>) in 2012/2013 season.

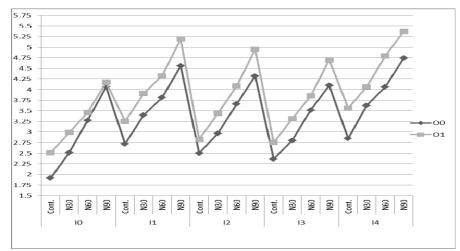



Fig. 3: Effect of interactions among nitrogen rates, N-biofertilization and organic fertilizer on wheat straw yield (ton fed<sup>-1</sup>) in 2011/2012 season.

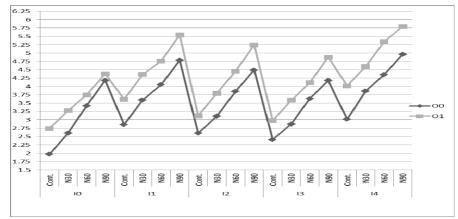



Fig. 4: Effect of interactions among nitrogen rates, N-biofertilization and organic fertilizer on wheat grain yield (ton fed<sup>-1</sup>) in 2012/2013 season.

#### Nitrogen uptake of wheat grain and straw (kg-N fed<sup>-1</sup>).

Data in Table 4 and Figs. 5, 6, 7 and 8 showed that there was significant increment in nitrogen uptake in both wheat grain and straw (total nitrogen removed by the crop from the soil in grain and straw) in both 2011/2012 and 2012/2013 seasons by increasing nitrogen fertilizer rates up to 90 kg N fed<sup>-1</sup>. Also, there was significant increment in N-uptake in wheat grain and straw in both 2011/2012 and 2012/2013 seasons, by using the inoculations, the highest mean values of N-uptake in grains and straw in 2011/2012 and 2012/2013 seasons were recorded when mixture of inoculation was applied followed by cyanobacteria inoculation then *Azotobacer* and lately *Azospirillum*. In addition, there was significant increment in N-uptake in wheat grains and straw by applying organic fertilizer

as compost in both seasons 2011/2012 and 2012/2013. These results are confirmed with those obtained by Ali et al., (2008), Hammad et al., (2011) and El-Sirafy et al., (2012).

The effects of interactions among organic fertilizer as compost, Nbiofertilization Inoculations and nitrogen application rates were showed in Table4. These interactions (I\*O, N\*I and N\*O) significantly affected N-uptake in grains and straw in 2011/2012 and 2012/2013 seasons, as well as  $(N^*I^*O)$  on N-Uptake in grains in 2<sup>nd</sup> season, but the interaction effect (N\*I\*O) on N-uptake in grains in 1<sup>st</sup> season was no significant.

| and straw yields. |                 |            |                       |                       |                       |                                             |                       |                       |                       |  |
|-------------------|-----------------|------------|-----------------------|-----------------------|-----------------------|---------------------------------------------|-----------------------|-----------------------|-----------------------|--|
|                   |                 | N-Upta     |                       |                       | f wheat               | N-Uptake (kg-N fed <sup>-1</sup> ) of wheat |                       |                       |                       |  |
| Troa              | tment           |            |                       | ain                   |                       | straw                                       |                       |                       |                       |  |
|                   |                 | 2011/2012  |                       | 2012/2013             |                       | 2011/2012                                   |                       | 2012/2013             |                       |  |
|                   |                 | <b>O</b> 0 | <b>O</b> <sub>1</sub> | <b>O</b> <sub>0</sub> | <b>O</b> <sub>1</sub> | <b>O</b> <sub>0</sub>                       | <b>O</b> <sub>1</sub> | <b>O</b> <sub>0</sub> | <b>O</b> <sub>1</sub> |  |
| Io                | Cont.           | 7.152      | 10.840                |                       | 11.634                | 1.925                                       | 4.196                 | 1.959                 | 4.522                 |  |
|                   | N <sub>30</sub> |            |                       |                       | 16.059                | 4.215                                       | 5.541                 | 4.413                 | 6.138                 |  |
|                   | N60             | 19.429     | 22.051                | 21.866                | 25.612                | 5.900                                       | 6.891                 | 6.125                 | 7.414                 |  |
|                   | N90             | 29.005     | 31.544                | 29.692                | 34.094                | 7.488                                       | 8.504                 | 7.778                 | 9.005                 |  |
|                   | Cont.           | 15.198     | 19.808                | 17.191                | 21.673                | 3.248                                       | 6.446                 | 3.459                 | 7.268                 |  |
| I1                | N <sub>30</sub> | 23.793     | 28.400                | 27.409                | 32.915                | 6.447                                       | 8.193                 | 6.843                 | 9.170                 |  |
| 1                 | N <sub>60</sub> | 29.818     | 36.103                | 33.759                | 39.739                | 7.563                                       | 9.499                 | 8.008                 | 10.391                |  |
|                   | N <sub>90</sub> | 37.019     | 48.444                | 44.299                | 52.765                | 9.402                                       | 11.852                | 9.610                 | 12.311                |  |
|                   | Cont.           | 11.755     | 16.419                | 14.946                | 18.209                | 2.854                                       | 5.359                 | 2.982                 | 5.929                 |  |
| 1.                | N <sub>30</sub> | 17.272     | 20.873                | 20.366                | 23.643                | 5.367                                       | 6.755                 | 5.643                 | 7.500                 |  |
| I2                | N <sub>60</sub> | 26.434     | 31.280                | 29.467                | 34.894                | 6.906                                       | 8.520                 | 7.309                 | 9.342                 |  |
|                   | N <sub>90</sub> | 33.892     | 40.854                | 36.378                | 44.556                | 8.387                                       | 10.615                | 8.753                 | 11.289                |  |
|                   | Cont.           | 9.542      | 12.063                | 10.243                | 13.136                | 2.545                                       | 4.920                 | 2.608                 | 5.343                 |  |
| I <sub>3</sub>    | N <sub>30</sub> | 13.067     | 16.920                | 15.191                | 19.605                | 4.819                                       | 6.302                 | 4.970                 | 6.859                 |  |
| 13                | N <sub>60</sub> | 23.825     | 27.402                | 25.049                | 29.664                | 6.455                                       | 7.810                 | 6.668                 | 8.342                 |  |
|                   | N <sub>90</sub> | 31.562     | 37.662                | 32.021                | 40.080                | 7.809                                       | 9.906                 | 7.993                 | 10.311                |  |
|                   | Cont.           | 17.198     | 23.343                | 19.574                | 25.676                | 3.587                                       | 7.433                 | 3.810                 | 8.417                 |  |
| I₄                | N <sub>30</sub> | 26.969     | 32.638                | 32.514                | 37.925                | 7.263                                       | 8.997                 | 7.765                 | 10.212                |  |
| 14                | N60             | 32.498     | 44.259                | 40.339                | 49.147                | 8.235                                       | 10.744                | 8.862                 | 12.026                |  |
|                   | N90             | 38.889     | 52.235                | 48.916                | 58.080                | 10.042                                      | 12.568                | 10.243                | 13.216                |  |
| F.                | test            | *          | *                     | ns                    |                       | **                                          |                       | **                    |                       |  |
|                   | D 5%            | 1.5        | 53                    | 1.887                 |                       | 0.327                                       |                       | 0.370                 |                       |  |
| LSI               | LSD 1%          |            | )57                   | 2.5                   | 500                   | 0.433                                       |                       | 0.490                 |                       |  |
|                   | Ν               | *          | *                     | *                     | *                     | *                                           | *                     | *                     | *                     |  |
|                   |                 | *          | *                     | *                     | *                     | *                                           | *                     | *                     | *                     |  |
| F. test           | 0               | *          | *                     | *                     | *                     | *                                           | *                     | *                     | *                     |  |
| r. test           | I*O             | *          | *                     | *                     | *                     | **                                          |                       | *                     | *                     |  |
|                   | N.O             |            | *                     |                       | *                     |                                             | *                     | *                     |                       |  |
|                   | N*I             | *          | *                     | *                     | *                     | *                                           | *                     | *                     | *                     |  |

| Table 4: Effect of interactions | among nitrogen  | rates, N-biofertilization             |
|---------------------------------|-----------------|---------------------------------------|
| and organic fertilizer          | on N-Uptake (kg | IN fed <sup>-1</sup> ) of wheat grain |
| and straw vields.               |                 |                                       |

\*Significant at 5% level.

\*\* Significant at 1% level.

 $O_0$  = without compost.

 $O_1$  = with compost.

I<sub>1</sub> = Cyanobacteria.

I<sub>0</sub> =without inoculations.

 $I_3 = Azospirillum.$ 

I<sub>2</sub> = Azotobacter.

Data in Table 4 and Figs. 5, 6, 7 and 8 showed that interaction effect between Nitrogen application, N-biofertlizaton inoculations and organic fertilizer treatments were significant on N-Uptake in wheat grain in 2011/2012 season and wheat straw in both 2011/2012 and 2012/2013 seasons, but it was insignificantly for wheat grain in 2012/2013 season. The highest values of N-uptake for wheat grains and straw in both 2011/2012 and 2012/2013 seasons, were obtained with  $O_1I_4N_{90}$ ,  $O_1I_1N_{90}$  and  $O_1I_4N_{60}$ , respectively. This effect of organic fertilizer and N-biofertilizer inoculations on nitrogen uptake could be attributed to release of nitrogen element from organic fertilizer through and after decomposing and to the high efficiency of these inoculations on fixing atmospheric nitrogen and/or to produce some biological active substances, e.g., gibberellins and cytokine, Keeling *et al.*, (1994); El-Hamdi *et al.*, (2012); El-Sirafy *et al.*, (2012) and Hammad *et al.*, (2011). **Nitrogen Utilization Efficiency (NU<sub>t</sub>E) (kg grain kg N-uptake**<sup>-1</sup>) of wheat

crop:

Data in Table 5 and Figs. 9 and 10 showed that there was significant decrease in NU<sub>t</sub>E in both 2011/2012 and 2012/2013 seasons by increasing nitrogen fertilizer rates up to 90 kg-N fed-1. Also, there was significant increment in NU<sub>t</sub>E by applying N-biofertilizer inoculations in both seasons 2011/2012 and 2012/2013. The highest value of NU<sub>t</sub>E was obtained with control treatment followed by *Azospirillum* inoculation, then *Azotobacter* inoculation, then cyanobacteria inoculation and then Mix inoculation. In addition, there was significant increment in NU<sub>t</sub>E by applying organic fertilizer as compost in both seasons 2011/2012 and 2012/2013, the highest value of NU<sub>t</sub>E was obtained without of organic fertilizer treatment then organic fertilizer treatment.

Data in Table 5 showed the effect of the interactions among nitrogen application, N-biofertlizaton inoculations and organic fertilizer treatments on nitrogen utilization efficiency for wheat crop in 2011/2012 and 2012/2013 seasons. These interactions (I\*O, N\*O, N\*I and N\*I\*O) were significantly decreased in NU<sub>t</sub>E for wheat crop in both seasons.

Data in Table 5 and Figs. 9 and 10 showed that interaction effect among nitrogen application, N-biofertlizaton inoculations and organic fertilizer treatments was significant on NU<sub>t</sub>E in both 2011/2012 and 2012/2013 seasons and the lowest values of NU<sub>t</sub>E were obtained with N<sub>90</sub>I<sub>4</sub>O<sub>1</sub> followed by N<sub>90</sub>I<sub>1</sub>O<sub>1</sub>, N<sub>60</sub>I<sub>4</sub>O<sub>1</sub> and N<sub>60</sub>I<sub>1</sub>O<sub>1</sub>.

Reduced overhead costs and the development of management practices were more responsive to a crop's physiological needs are both two of modern agriculture's primary objectives. Growing attention in this connection has been devoted to the nitrogen utilization efficiency of plants. Although it is the determinant factor in cereal crop yield, nitrogen involves high energy-production costs and because of its mobility in the soil–plant– atmosphere system, easily dissipated in the environment if not properly applied (Giardini, 1989 and Mahler *et al.*, 1994).

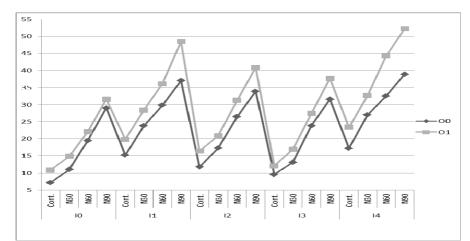



Fig. 5: Effect of interactions among nitrogen rates, N-biofertilization and organic fertilizer on N-Uptake (kg N fed<sup>-1</sup>) of wheat grain yield in 2011/2012 season.

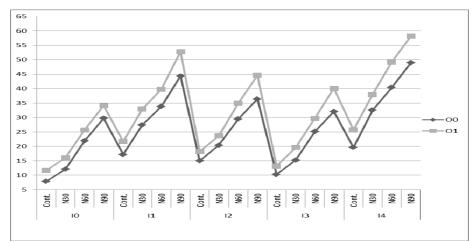



Fig. 6: Effect of interactions among nitrogen rates, N-biofertilization and organic fertilizer on N-Uptake (kg N fed<sup>-1</sup>) of wheat grain yield in 2012/2013 season.

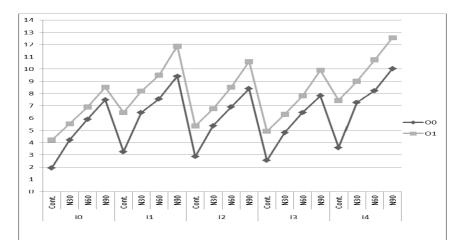



Fig. 7: Effect of interactions among nitrogen rates, N-biofertilization and organic fertilizer on N-Uptake (kg N fed<sup>-1</sup>) by wheat straw yield in 2011/2012 season.

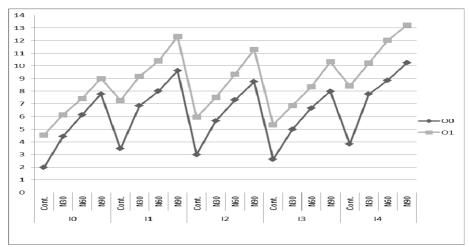



Fig. 8: Effect of interactions among nitrogen rates, N-biofertilization and organic fertilizer on N-Uptake (kg N fed<sup>-1</sup>) by wheat straw yield in 2012/2013 season.

| Treatment      |                 | Nitrogen utilization efficiency<br>(kg-grain kg N-uptake <sup>-1</sup> ) |                       |           |                       |  |  |  |  |
|----------------|-----------------|--------------------------------------------------------------------------|-----------------------|-----------|-----------------------|--|--|--|--|
| In             | eatment         | 2011                                                                     | /2012                 | 2012/2013 |                       |  |  |  |  |
|                |                 | Oo                                                                       | <b>O</b> <sub>1</sub> | Oo        | <b>O</b> <sub>1</sub> |  |  |  |  |
|                | Cont.           | 161.01                                                                   | 126.22                | 152.38    | 123.97                |  |  |  |  |
| lo             | N <sub>30</sub> | 124.97                                                                   | 108.39                | 118.25    | 105.68                |  |  |  |  |
|                | N <sub>60</sub> | 95.720                                                                   | 86.020                | 89.260    | 80.180                |  |  |  |  |
|                | N <sub>90</sub> | 80.650                                                                   | 73.980                | 81.150    | 73.300                |  |  |  |  |
|                | Cont.           | 112.69                                                                   | 93.630                | 105.22    | 91.340                |  |  |  |  |
|                | N <sub>30</sub> | 84.870                                                                   | 79.010                | 78.520    | 74.060                |  |  |  |  |
| I <sub>1</sub> | N <sub>60</sub> | 75.420                                                                   | 68.260                | 70.910    | 67.120                |  |  |  |  |
|                | N <sub>90</sub> | 71.140                                                                   | 61.190                | 64.520    | 61.440                |  |  |  |  |
|                | Cont.           | 130.81                                                                   | 98.170                | 110.35    | 94.350                |  |  |  |  |
|                | N <sub>30</sub> | 98.950                                                                   | 93.160                | 89.380    | 88.580                |  |  |  |  |
| <b>I</b> 2     | N <sub>60</sub> | 81.170                                                                   | 73.750                | 76.570    | 71.230                |  |  |  |  |
|                | N <sub>90</sub> | 74.080                                                                   | 68.270                | 72.400    | 67.720                |  |  |  |  |
|                | Cont.           | 149.41                                                                   | 122.49                | 142.65    | 117.67                |  |  |  |  |
|                | N <sub>30</sub> | 118.21                                                                   | 105.53                | 106.73    | 97.050                |  |  |  |  |
| I <sub>3</sub> | N <sub>60</sub> | 85.930                                                                   | 78.600                | 83.710    | 76.510                |  |  |  |  |
|                | N <sub>90</sub> | 75.450                                                                   | 70.210                | 75.940    | 69.810                |  |  |  |  |
|                | Cont.           | 104.79                                                                   | 87.390                | 98.090    | 68.060                |  |  |  |  |
| I4             | N <sub>30</sub> | 80.020                                                                   | 72.240                | 71.800    | 68.330                |  |  |  |  |
| 14             | N <sub>60</sub> | 73.730                                                                   | 62.620                | 64.610    | 61.730                |  |  |  |  |
|                | N <sub>90</sub> | 70.290                                                                   | 58.870                | 61.070    | 58.670                |  |  |  |  |
|                | F. test         | ÷                                                                        | **                    | **        |                       |  |  |  |  |
|                | SD 5%           | 2.4                                                                      | 414                   | 2.660     |                       |  |  |  |  |
| L              | SD 1%           |                                                                          | 197                   | 3.523     |                       |  |  |  |  |
|                | N               |                                                                          | **                    | **        |                       |  |  |  |  |
|                | I               |                                                                          | **                    |           | *                     |  |  |  |  |
| F. test        | 0               |                                                                          | **                    |           | *                     |  |  |  |  |
| F. 1851        | I*O             |                                                                          | **                    |           | *                     |  |  |  |  |
|                | N.O             |                                                                          | **                    | *         | *                     |  |  |  |  |
|                | N*I             |                                                                          | **                    | *         | *                     |  |  |  |  |
| Significant at | 5% lovel ** Si  | onificant at 1%                                                          | امريما                |           |                       |  |  |  |  |

## Table 5: Effect of interactions among Nitrogen rates, N-biofertilization and organic fertilizer on N Utilization Efficiency (kg grain kg N-uptake<sup>-1</sup>)

\*Significant at 5% level.  $O_0$  = without compost.

Significant at 1% level.

I<sub>0</sub> =without inoculations.

O<sub>1</sub> = with compost. I<sub>1</sub> = Cyanobacteria.

I<sub>2</sub> = Azotobacter.

 $I_3 = Azospirillum.$ 

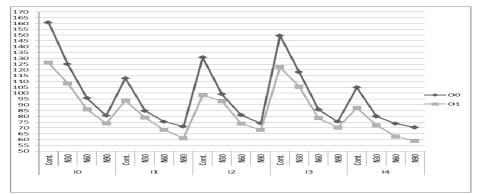



Fig. 9: Effect of interactions among Nitrogen rates, N-biofertilization and organic fertilizer on NU<sub>t</sub>E (kg grain kg N-uptake<sup>-1</sup>) of wheat grain yield in 2011/2012 season.

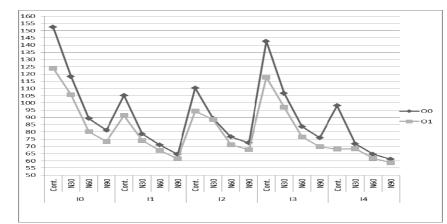



Fig. 10: Effect of interactions among Nitrogen rates, N-biofertilization and organic fertilizer on NU<sub>t</sub>E (kg grain kg N-uptake<sup>-1</sup>) of wheat grain yield in 2012/2013 season.

## CONCLUSION

It could be concluded that applying N-biofertilizers and organic fertilizer produced high wheat grain yield when it combined with (30 kg-N fed<sup>1</sup>). Also applying biofertilization and organic fertilizer with 30 or 60 kg-N fed<sup>-1</sup> conserves the environment by reducing pollution hazards caused by leaching nitrate in the drainage water and through volatilization of NH<sub>3</sub> gas from (NH<sub>4</sub>)<sub>2</sub> SO<sub>4</sub> and CO(NH<sub>2</sub>)<sub>2</sub> fertilizers.

## REFERENCES

- Abd El-Fattah, F. K.; M. H. El-Kholy and M. H. Hegazy (1999). Response of rice yield to *Azolla* and inoculation with BGA under different levels of phosphorus fertilization. J. Agric. Sci. Mansoura Univ, 24 (6): 3145-3155.
- Ali, S. A.; A. E. El-Sherbieny; S. M. Dahdouh and M. M. Mostaffa (2008). Nitrogen fertilization management for wheat (Triticum aestivum) irrigated with El-Salam canal water, South east quntra, Sina. Zagazig J. Agric. Res., 35(5)1083-1105.
- Baldani V. L. D.; J. I. Baldani and J. Do"bereiner (1983). Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can J Microbiol, 29:924–929
- Baldani V. L. D.; J. I. Baldani and J. Do<sup>-</sup>bereiner (1987). Inoculation of field grown wheat (*Triticum aestivum*) with *Azospirillum spp.* in Brazil. Biol Fertil Soils, 4:37–40.
- Bellido, L. L.; R. J. L. Bellido and R. Redondo (2005). Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crops Research. 94: 86-97.

- Bloemberg, G. V. and B. J. J. Lugtenberg (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol, 4: 343–350.
- Chen Y. and Y. Avnimelech (1986). The Role of Organic Matter in Modern Agriculture. Nijhoff, Dordrecht, pp 306.
- Choudhury, A. T. M. A. and I. R. Kennedy (2004). Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biology and Fertility of Soils. Curitiba, Brazil, 39(4): 219-227.
- Dobbelaere, S.; A. Croonenborghs; A. Thys; D. Ptacek; J. Vanderleyden; P. Dutto; C. Labandera-Gonzalez; J. Caballero-Mellado; J. F. Aguirre; Y. Kapulnik; S. Brener; S. Burdman; D. Kadouri; S. Sarig and Y. Okon (2001). Responses of agronomically important crops to inoculation with *Azospirillum*. Aust. J. Plant Physiol, 28: 871–879.
- EL-Hamdi Kh. H.; E. M. Selim and H. I. Husein (2012). Integrated impacts of humic acid, halotolerant N2 fixers and nitrogen application on wheat yield (Triticum aestivum L.), yield component and nutrient uptake. J. Soil Sci. and Agric. Eng., Mansoura Univ., 3(12):1263-1274.
- El-Sirafy Z. M.; S. A. Genaidy and Kh. A. El-Nakma (2012). Importance of organic manuring and mineral fertilization for wheat yield and its components in El-Dakahlia Governorate. J. Soil Sci. and Agric. Eng., Mansoura Univ., 3(12):1251-1261.
- Fiez, T. E.; W.L. Pan and B.C. Miller (1995). Nitrogen use efficiency of winter wheat among landscape positions. Soil Sci. Soc. Am. J. 59:1666–1671.
- Giardini, L. (1989). Aspetti agronomici e fisiologici della conci- mazione azotata in relazione con l'ambiente. Riv. di Agron. 23 (1), 3–22.
- Hammad, S. A.; H. A. Meshref; T. M. El-Zehery and K. F. Fouda (2011). Influence of organic and inorganic fertilizers on soil nutrients availability and wheat productivity. J. Soil Sci. and Agric. Eng., Mansoura Univ., 2(3):315-326.
- Jackson, M. L. (1967). (Soil Chemical Analysis(. Prentice-Hall of India, New Delhi.
- Kannaiyan, S. (2003). Inoculant production in developing countries problems, potentials and success. Maximizing the use of biological nitrogen fixation in agriculture-Report of an FAO/IAEA-Technical Expert Meeting held in Rome,-13-15-March-2001, 187-198.
- Kapulnik, Y.; S. Sarig; I. Nur and Y. Okon (1983). Effect of *Azospirillum* inoculation on yield of field grown wheat. Can J Microbiol, 29:895–899.
- Keeling, A. A.; I. K. Paton and J. A. J. Mullett (1994). Germination and growth of plants in media containing unstable refuse-derived compost. Soil Biol. Biochem, 26, 767–772.
- Mansour, A. A. and A. H. Bassiouny (2009). Seeding and nitrogen rates required to maximize yield of Gemmiza 9 wheat cultivar in Easter Delta region. J. Agric. Sci. Mansoura Univ., 34(5): 4991-5002.
- Mahler, R. L.; F. E. Koehler and L. K. Lutcher (1994). Soils, nitrogen source, timing of application and placement effects on winter wheat production. Agron. J. 86, 637–642.

- Mosaad, I. S. (2005). Treating paddy field with N<sub>2</sub>-biofertilization and its effect on growth, nutrients uptake and yield of sequent crop. M.Sc Thesis, Fac. of Agric. Mansoura University.
- Parsons J. W. (1985). Organic farming. In: Vaughan D and R. E. Malcolm (eds) Soil Organic Matter and Biological Activity. Nijhoff, Dordrecht, pp 423-443.

Piper, C. S. (1950). Soil and Plant Analysis. Inter. Sci. Publishers Inc. New York.

- Poincelot R. P. (1975). Biochemistry and methodology of composting. Connecticut, Agric Exp St, Bull 754.
- Roger, P. A.; S. A. Kulasooriya and E. T. Crasswell (1980). Deep placement: a method of nitrogen fertilizer application compatible with algal nitrogen fixation in wetland rice soils. Plant Soil, 57:137-142.
- Salem, M. A. (2005). Effect of nitrogen rates and yield components of bread wheat (Triticum aestivum, L.) genotypes under newly reclaimed land conditions. J. Agric. Sci. Mansoura Univ., 30(11): 6481-6490.
- Shoman, H. A.; A. M. Abo-Shtaia; K. A. El-Shouny and M. A. Abd-Elgawad (2006). Effect of biological and organic fertilization yield and its components of two wheat cultivars under Al-Wady Al-Gaded conditions. Alex. J. Agric. Res., 51:49-65.

Simpson, K. (1983). Soil. Longman, London, pp 238.

- Sowers, K. E.; W. L. Pan; B. C. Miller and J. L. Smith (1994). Nitrogen use efficiency of split nitrogen applications in soft white winter wheat. Agron. J. 86:942–948.
- Steel, R. G. D. and J.H. Torrie (1980). Principles and Procedures of Statics. 2nd ed. Mc Graw Hill. International Book Company, New York, USA.
- Stevenson, F. J. and M. S. Ardakani (1972). Organic matter reactions involving micronutrients in soils. In: Martvedt J J., P. M. Giordano and W. L. Lindsay (eds) Micronutrients in Agriculture. Soil Sci Soc Am, Madison, Wisc, pp 79-114.
- Tammam, A. M. and M. B. Tawfils (2004). Effect of sowing dates and nitrogen fertilizer levels in relation to yield and yield components of durum wheat under Upper Egypt environments. J. Agric. Sci. Mansoura Univ., 29(10): 5431-5442.
- Tarrand, J. J.; N. R. Krieg and J. Do<sup>-</sup>bereiner (1978). A taxonomic study of the Spirillum lipoferum group, with description of a new genus. *Azospirillum* gen. nov. and two species. *Azospirillum lipoferum* (*Beijerinck*) comb. nov. and *Azospirillum brasilense sp.* nov. Can J Microbiol, 24:967–980.
- Tuttobene, R.; G. Avola; F. Gresta and V. Abbate (2009). Industrial orange waste as organic fertilizer in durum wheat. Agron. Sustain. Dev., 29 (2009): 557–563.
- Vaughan, D. and B. G. Ord (1985). Soil organic matter: A perspective on its nature, extraction, turnover and role in soil fertility. In: Vaughan D, Malcom RE (eds) Soil Organic Matter and Biological Activity. Nijhoff, Dordrecht, pp 1-35.

- Wilkinson, R. L. (2000). (Plant-Environment Interactions(. 2<sup>nd</sup> Ed. Marcel Dekker, Inc. New Yourk. B<sub>ASEL</sub>, pp. 66.
- Zein, F.; N. El-Aidy and M. Nour El-Din (2000). Combined effect of bioorganic fertilization at different N-levels on yield and grain quality and activity of amylase of two wheat varieties. J. Agric. Sci. Mansoura Univ., 25(6):3039-3052.

# تأثير التسميد النيتروجينى المعدنى ، الحيوى والعضوى على انتاجية القمح وكفاءة الاستفادة من النيتروجين وامتصاصه فى شمال دلتا مصر. إبراهيم سعيد محمد مسعد ، الحسينى المرسى السيد خفاجى و رمضان عوض الدسوقى معهد بحوث الأراضي والمياه والبيئة – مركز البحوث الزراعية – الجيزة – مصر.

أجريت تجربتان حقليتان فى محطة البحوث الزراعية بالسرو بمحافظة دمياط خلال الموسمين الشتوبين لعامى٢٠١٢/٢٠١١ – ٢٠١٣/٢٠١٢ لدارسة تأثير كل من التسميد العضوي فى صورة كمبوست بمعدل ٢٠ م٣/الفدان ، التسميد الحيوي النيتروجيني (طحالب خضراء مزرقة، لقاح الأزوتوباكتر، لقاح الأزوسبيريلم ومخلوط من اللقاحات السابقة) أربع معدلاتُ من التسميد النيتروجيني (صفر ، ٣٠ ، ٦٠ و ٩٠كجم نتروجين /فدان) على محصول القمح من الحبوب والقش، امتصاص النيتروجين في الحبوب والقش وكفاءة الاستفادة من النيتروجين لمحصول القمح صنف سخا ٩٣. أوضحت النتائج أن قيم كل من محصول القمح من الحبوب والقش وإمتصاص النيتروجين فى الحبوب والقش تزيد مع استخدام معدلات التسميد النيتروجينى حتى ٩٠ كجم نيتروجين /فدان بينما تنقص قيم كفاءة الاستفادة من النيتروجين. كذلك أوضحت النتائج أن مخلوطً الأسمدة الحيوية ثم الطحالب الخضراء المزرقة ثم لقاح الأزوتوباكتر ثم الأزوسبيريلم على التوالي أعطت أعلى القيم من المدلولات السابقة ماعدا كفاءة الاستفادة من النيتروجين لمحصول القمح أيضا أوضحت النتائج أن استخدام التسميد العضوى في صورة كومبوست أعطى أعلى القيم من محصول القمح من الحبوب والقش وإمتصاص النيتروجين فى الحبوب والقش وأقل قيم كفاءة الاستفادة من النيتروجين لمحصول القمح. كما أوضحت النتائج أنه باستخدام التسميد العضوي مع مخلوط الأسمدة الحيوية مع ٩٠ كجم نيتر وجين/فدان أعطت أعلى القيم لمحصول الحبوب والقش وكذلك أمتصاص النيتروجين للحبوب والقش بينما أعطت أقل قيم كفاءة الاستفادة من النيتروجين. أوضحت النتائج أيضا أنه باستخدام التسميد العضوي مع التسميد الحيوي بمخلوط اللقاحات أو الطحالب الخضراء المزرقة أو الأزوتوباكتر مع ثلث معدل التسميد النيتروجينى المعدني الموصى به (٣٠ كجم نيتروجين /فدان) أعطت محصول إقتصادى من حبوب وقش القمح واستفادة للنيتروجين عالية وبالتالي توفيرا في التسميد النيتروجينى المعدني الذي قد يفقد عند استخدام المعدلات الموصى بها كاملة وبالتالي المحافظة على البيئة عن طريق الحد من مخاطر التلوث.

## قام بتحكيم البحث

أ.د / السيد محمود الحديدى
 أ.د / عبد الله همام

كلية الزراعة – جامعة المنصورة مركز البحوث الزراعية