	Mansoura University Faculty of Engineering	Mathematics 4	1 st year Civil Engineering Dept. Final Exam, June 2012
and a state of the	Math. & Eng. Physics. Dept.		Time Allowed: 3 Hours.
	ن إحدى نهايتي ورقة الإجابة.	عدة من وجهين. برجاء بدء إجابة كل فرع م	يتألف الإختبار من 4 أسئلة في ورقة وا
		حليل العددي عند الحاجة للشرح	يسمح بالإجابة باللغة العربية فى فرع الن

Part (A)

Question (1): [25 points]

(a) Use the successive approximation method to find one root (accurate to three decimal places) of the equation x³ - 3 = 2x. Take x₀ = 1.32235. [5 points]
(b) Use Taylor series method of third order to approximate y at x = 0.1 for the differential equation y' = 3x + y², y(0) = 1 [10 points]

(c) Use the finite difference method to approximate the solution of $y'' + 4y = \cos x$, $0 \le x \le \frac{\pi}{4}$, subject to the conditions y(0) = 0, $y(\frac{\pi}{4}) = 0$. Divide the interval into three segments. [10 points]

Question (2): [30 points]

(a) Solve the following PDE numerically

 $u_t - u_{xx} = 0, \ 0 < x < 2, \ 0 < t$

where the solution equals zero at both boundaries and equals x(2-x) at the initial step. Take $\Delta x = 0.5$ then choose an appropriate Δt to find the approximate solution at t = 0.3

[15 points]

(b) Deduce the stability condition when solving the equation u' = a u, where a is a real constant, using implicit (backward) Euler method for: (i) a > 0 (ii) a < 0. [10 points] (c) A function is required to pass through 20 readings. What is the best method to do it: Newton divided difference, cubic splines, least squares fitting? Why? [5 points]

Page 1

- Part (B)
- 3. (a) Evaluate the following integrals

i.
$$\int_{0}^{\infty} \sqrt{x} e^{-\sqrt{x}} dx$$

ii.
$$\int_{0}^{\pi/2} \sqrt{\tan \theta} d\theta$$

iii.
$$\int x^{n+3} J_n(x) dx$$

2

- (b) Find the general solution of the differential equation $x^2y'' xy' + (4x^2 3)y = 0$.
- (c) For the second order ordinary differential equation

$$(x^2 - 1)y'' + 4xy' + 2y = 0,$$

- i. Locate and classify its singular points, if exist.
- ii. Use the power series method to find the series solution about the ordinary point x = 0.
- (d) Prove that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x.$ [Hint: $\Gamma(n + \frac{1}{2}) = \frac{\sqrt{\pi} 2n!}{2^{2n} n!}$]
- 4. (a) Find the first two nonzero terms in the Legendre expansion of

$$g(x) = \begin{cases} 0 & -1 < x < 0, \\ 4 & 0 < x < 1. \end{cases}$$

- (b) Determine the regions in the xy-plane for which the equation $\frac{\partial^2 u}{\partial y^2} + y \frac{\partial^2 u}{\partial x^2} = 0$ is hyperbolic, parabolic, or elliptic.
- (c) Given the function

$$f(x) = \begin{cases} -1 - x & -1 < x < -\frac{1}{2} \\ x & -\frac{1}{2} < x < \frac{1}{2}, \\ 1 - x & \frac{1}{2} < x < 1 \end{cases}$$

which has the property f(x) = f(x+2). Answer the following questions :

- i. Sketch the function within three complete successive periods
- ii. Check whether the function is odd or even or neither
- iii. Evaluate the Fourier coefficients
- iv. Write the corresponding Fourier series
- (d) By using the method of separation of variables find the solution u(x,t) to the diffusion equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \qquad \qquad 0 < x < 1, \quad t > 0,$$

where u(x,t) satisfies the initial and boundary conditions

$$u(x,0) = \begin{cases} x & \text{for } 0 < x < \frac{1}{2} \\ 1 - x & \text{for } \frac{1}{2} < x < 1 \\ u(0,t) = 0, & u(1,t) = 0, \end{cases}$$

[Hint: you may find the answer to part (c) useful.]

Mansoura University	Math (1)	1 st year.
Faculty of Engineering	Math (4)	Final Exam, May 2012
Math. & Eng. Physics, Dent.	(من الحارج)	Time Allowed: 3 hour

Exam Guidelines:

This Exam contains 4 questions in 2 pages. Please start the answer of each branch on the opposite ends of your answer sheet.

يتألف الإختبار من 4 أسئلة في صفحتين. برجاء بدء إجابة كل فرع من إحدى نهايتي ورقة الإجابة.

Question (1) [25 points]

(a) Evaluate the integrals: $\int_{0}^{\infty} \sqrt[3]{ye^{-y}} dy$ [5 points]

(b) Find the series solution of the differential equation about $x_0 = 0$

$$y'' + x^2 y = 0$$
 [10 points]

(c) Prove that for any positive integer n, $J_{-n}(x) = (-1)^n J_n(x)$. [10 points]

Question (2) [30 points]

(a) Obtain the Fourier series of the function f(x) defined by:

$$f(x) = \begin{cases} 0 & -\pi \le x < 0 \\ \pi - x & 0 \le x \le \pi. \end{cases}$$

with $f(x) = f(x + 2\pi)$. Hence, prove that

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 [15 points]

(b) Use the separation of variables technique to solve the heat equation

$$u_{xx} = \frac{1}{k}u_t, \quad 0 < x < L, \ t > 0$$

subjected to the conditions

$$u(0,t) = 0$$

 $u(L,t) = 0$
 $u(x,0) = f(x)$ [15 points]

Part II – Numerical Methods

Question (3): [29 Marks]

(a) Deduce the normal equations for the least square line y = A + Bx [7 Marks]

(b) Consider the function $g(x) = 2L_0(x) + L_1(x) - (L_2(x) + 3)^2$, where $L_i(x)$ [8 Marks] Lagrange's coefficient polynomial based on nodes x_0, x_1, x_2 .

- (i) Find the values of $g(x_i)$, i = 0,1,2
- (ii) What is the degree of the polynomial g(x).
- (c) Use Newton-Raphson method to find the root of the equation $5x e^x = 0$, correct to 4 decimal places. [7 Marks]
- (d) Deduce the convergence condition for the simple iteration method. [7 Marks]

Question (4): [24 Marks]

(a) Use the iterative form $x_i^{(k)} = \frac{1}{a_{ii}} [b_i - \sum_{j=1}^{l-1} a_{ij} x_j^{(k)} - \sum_{j=l+1}^{n} a_{ij} x_j^{(k-1)}]$ to solve the system 2x - 4y + 10z = 6 [8 Marks] 5x - y - 3z = -2x + 5y - 2z = 10

Four iterations are required.

(b) Given the initial-value problem 2y' = 2xy + 3, y(0) = 1, find:

(i) y(0.2) by Euler's method.

(ii) y(0.3) by the fourth order Runge-Kutta method.

(c) Use finite difference method to solve the equation

 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad 0 < x < 2, \quad 0 < y < 2, \text{ where}$ $u(x,0) = u(x,2) = x(2-x), \quad 0 < x < 2$ $u(0,y) = u(2,y) = 0, \quad 0 < y < 2, \quad h = k = 0.5$ [8 Marks]

[8 Marks]

and a set