SYNTHESIS OF SOME FUSED PYRIMIDINE DERIVATIVES WITH EXPECTED BIOLOGICAL ACTIVITY

A.H. Abd El-Aleem, M. Zahran and H. Marouf
Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koam, Egypt.

Abstract

Pyrazolo[3,4-d]pyrimidine 1 condensed with acetylacetone, ethylacetoacetate in methanol, ethylacetoacetate in Acetic anhydrid, phenylisocyanate and ethoxymethylenecyanoacetate under several reactions conditions afforded the corresponding pyrazolo[3,4-d]pyrimidine derivatives $4,5,6,7$ and 8 , respectively. On the other hand 1 reacted via diazotization reaction with 1,3-dimethylbarbituric acid, thiobarbituric acid and pyrazolone to give the corresponding hydrazone derivatives 9, 10 and 11 respectively.

Also 6-chloro-5-cyano-1,3-dimethyluracil 3 reacted with methyl and phenyl-hydrazine, semicarbazide, thiosemicarbazide, malononitrile and hydroxylamine affording prazolo [3,4-d]pyrimidine derivatives $12 a, b, 13,14,15$ and 16, respectively.

INTRODUCTION

Several uracil derivatives have been recently developed. Azidothymidine $(\mathrm{AZT})^{1}$ and cyanothymidine (CNT) ${ }^{2}$ have been applied successfully as reverse transcriptase inhibitors ${ }^{3}$ in AIDS treatment, in various pharmacological activities ${ }^{4}$, antibacterial and anticonvulsive
activities. ${ }^{5}$ As an extension of the previous investigations ${ }^{6-8}$, special attention was drawn to synthesize some new pyrimidine derivatives.

DISCUSSION

The starting material ${ }^{9} 1$ reacted with acetylacetone ${ }^{10}$, ethylacetoacetate in methanol, ethylacetoacetate in acetic anhydride, phenylisocyanate ${ }^{11}$ and ethoxy-methylenecyanoacetate under different conditions afforded the corresponding pyrazolodipyrimidine derivatives $4,5,6,7$ and 8 , respectively.

Infrared spectrum of 4 revealed $\gamma_{2} \mathrm{C}=0$ at $1700,1655 \mathrm{~cm}^{-1}$ and $\gamma_{\mathrm{C}=\mathrm{N}}$ at $1620 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 4 showed $\delta=2.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $3.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. The mass spectrum of 4 showed a molecular ion peak at ($\mathrm{m} / \mathrm{z}, 100 \%, 259$).

Infrared spectrum of 5 showed $\gamma_{3 \mathrm{C}=\mathrm{O}}$ at $1695,1680,1630 \mathrm{~cm}^{-1}$ and $\gamma_{\mathrm{C}=\mathrm{N}}$ at $1595 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 5 showed $\delta=2.3(\mathrm{~s}, 3 \mathrm{H}$, CH_{3} of pyrimidine ring), $3.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, uracil ring), $5.9\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right)$. The mass spectrum 5 shows a molecular ion peak at ($\mathrm{m} / \mathrm{z}, 100 \%, 261$).

Infrared spectrum of 6 showed $\gamma_{3} \mathrm{C}=\mathrm{O}$ at $1680,1650,1630 \mathrm{~cm}^{-1}$ and γ_{NH} at $3240 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 6 showed $\delta=2.2(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 10.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$ and 13.1 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ of pyrazole). The mass spectrum of compound $\mathbf{6}$ showed molecular ion peak at ($\mathrm{m} / \mathrm{z}, 31 \%, 237$) and base peak at 195 .
\qquad

Infrared spectrum of 7 revealed γ_{NH} at $3300 \mathrm{~cm}^{-1}$ and $\gamma_{3 \mathrm{C}=0}$ at 1710 , 1685 and $1655 \mathrm{~cm}^{-1}$, respectively. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 7 showed $\delta=$ $3.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.1-7.7(\mathrm{~m}, 5 \mathrm{H}$, arom.) and 9.77 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ of pyrazole ring). The mass spectrum of 7 showed the base peak at ($\mathrm{m} / \mathrm{z}, 100 \%, 195$).

Infrared spectrum of 8 showed γ_{NH} at $3200 \mathrm{~cm}^{-1}, \gamma_{\mathrm{C} \equiv \mathrm{N}}$ at $2200 \mathrm{~cm}^{-1}$ and $\gamma_{3 \mathrm{C}=0}$ at 1700,1680 and $1650 \mathrm{~cm}^{-1}$ respectively. The mass spectrum of 8 showed molecular ion peak at ($\mathrm{m} / \mathrm{z}, 100 \%, 318$).

The diazotization of $\mathbf{1}$ followed by condensation with active methylene derivatives, namely dimethylbarbituric acid ${ }^{12}$, thiobarbituric acid and pyrazolone gave the corresponding hydrazone derivatives 9,10 and 11 , respectively.

Infrared spectrum of 9 showed γ_{OH} at $3290 \mathrm{~cm}^{-1}, \gamma_{\mathrm{NH}}$ at $3120 \mathrm{~cm}^{-1}$, $\gamma_{+C=0}$ at $1700,1670,1630$ and $1620 \mathrm{~cm}^{-1}$, respectively. The mass spectrum of 9 showed molecular ion peak at ($\mathrm{m} / \mathrm{z}, 100 \%, 362$).

Infrared spectrum of 10 showed γ_{OH} at $3325 \mathrm{~cm}^{-1}, \gamma_{\mathrm{NH}}$ at $3150 \mathrm{~cm}^{-1}$ and $\gamma_{\mathrm{C}=\mathrm{S}}$ at $1290 \mathrm{~cm}^{-1}$ and $\gamma_{3 \mathrm{C}=\mathrm{O}}$ at 1700,1660 and $1640 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR spectrum of 10 showed $\delta=3.1\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, pyrimidine ring). The mass spectrum of 10 showed molecular ion peak at ($\mathrm{m} / \mathrm{z}, 100 \%, 350$). $\gamma_{2} \mathrm{C}=\mathrm{O}$ at 1700 and $1660 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 11 showed $\delta=$ $3.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $7.75-7.90$
($\mathrm{m}, 5 \mathrm{H}$, arom.). The mass spectrum of 11 showed molecular ion peak at (m/z, 100\%, 381).

6-Chloro-5-cyano-1,3-dimethyl uracil 3 reacted with methyl and phenylhydrazine, semicarbazide, thiosemicarbazide ${ }^{12}$, malononitrile and hydroxylamine ${ }^{13}$ affording pyrazolo[3,4-d]pyrimidine derivatives $12 \mathrm{a}, \mathrm{b}, 13,14,15$ and 16 , respectively.

Infrared spectra of the above compounds showed $\gamma_{\mathrm{C}=\mathrm{O}}$ at $1700-1630$ $\mathrm{cm}^{-1}, \gamma_{\mathrm{NH}_{2}}$ at $3480-3350 \mathrm{~cm}^{-1}, 3360-3300 \mathrm{~cm}^{-1}, \gamma_{\mathrm{OH}}$ at $3220 \mathrm{~cm}^{-1}$, $\gamma_{\mathrm{C}=\mathrm{S}}$ at $1280 \mathrm{~cm}^{-1}, \gamma_{\mathrm{C} \equiv \mathrm{N}}$ at $2160 \mathrm{~cm}^{-1}$ and γ_{NH} at $3320 \mathrm{~cm}^{-1}$. The mass spectrum of 12a showed a molecular ion peak at ($\mathrm{m} / \mathrm{z}, 73 \%, 209$) and base peak at $\mathrm{m} / \mathrm{z} 81$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 2 b}$ showed $\delta=3.15(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$, uracil ring), $3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, uracil ring), $6.6\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$ and $7.55-7.60$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic protons). The mass spectrum of $\mathbf{1 2 b}$ showed a molecular ion peak at ($\mathrm{m} / \mathrm{z}, 100 \%, 271$).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 13 showed $\delta=3.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.27(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 7.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$, amide $\left.\mathrm{NH}_{2}\right)$, and $7.8\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$ pyrazole $)$. The mass spectrum of 13 showed a molecular ion peak at ($\mathrm{m} / \mathrm{z}, 21 \%$, 238) and a base peak at $\mathrm{m} / \mathrm{z} 195$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 14 showed $\delta=3.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.30(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 8.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$, thioamide) and $9.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$ pyrazole ring). The mass spectrum of 14 showed a molecular ion peak at (m / z, $31 \%, 254$) and a base peak at $\mathrm{m} / \mathrm{z} 195$.

Malononitrile did not react with 3, only hydrolysis took place to give compound 15. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 15 showed $\delta=3.1\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$
and $3.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. The mass spectrum of 15 showed a molecular ion feak at ($\mathrm{m} / \mathrm{z}, 95 \%, 181$) and a base peak at $\mathrm{m} / \mathrm{z} 150$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 16 showed $\delta=3.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.20(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}) and $8.4\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$. The mass spectrum of 16 showed a molecular ion peak at ($\mathrm{m} / \mathrm{z}, 100 \%, 196$).

Antimicrobial Activity

The tested organisms are four Gram-positive (Bacillus subtilis (B.s.) and Saccaromyces servicia (S.s)) and two Gram-negative (E. coli and Pseudomonas gladioli (P.g)) bacteria. The results obtained revealed that the tested compounds 4,5 and 6 inhibit the growth of Gram-negative strains in low concentrations. On the other hand, with respect to the Gram-positive strains, it has been found that compounds $4,12 a, b$ and 13 inhibit their growth in high concentrations but less effective in low conentrations.

EXPERIMENTAL PROCEDURES

All melting points are uncorrected and were taken in a Gallenkamp electric melting point apparatus. Infrared spectra were performed on a Perkin-Elmer IR-spectrophotometer 598 (4000-200 cm^{-1}) using KBr wafer technique. Microanalyses were carried out by Microanalytical Unit, Cairo University. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were obtained in DMSO by Varian EM-390 (90 MHz) spectrometer.

Synthesis of 1,3,6,8-tetramethylpyrazolo [3,4-d : 2,3-a] di-pyrimidine-2,4-($1 \mathrm{H}, 3 \mathrm{H}$)-dione 4 :

A mixture of $0.39 \mathrm{~g}(2 \mathrm{~m} \mathrm{~mol})$ of 1 and acetylacetone $0.205 \mathrm{ml}(2 \mathrm{~m}$ mol) in absolute ethanol was refluxed for 2.5 h . The resulting precipitate was collected by filtration and recrystallized from methanol to give $0.29 \mathrm{~g}(55.9 \%)$ m.p. $280-282^{\circ} \mathrm{C}$.

Analysis: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2}$ Required: $\mathrm{C}, 55.59 ; \mathrm{H}, 5.01 ; \mathrm{N}, 27.02$ (259)

Found:
C, 56.5; H, 4.75; N, 27.3
Synthesis of 7-hydro-1,3,6-trimethylpyrazolo [3,4-d : 2,3-a] di-pyrimidine-2,4,8-($1 \mathrm{H}, 3 \mathrm{H}$)-trione 5 :

A mixture of $0.39 \mathrm{~g}(2 \mathrm{~m} \mathrm{~mol})$ of 1 and ethylacetoacetate $0.212 \mathrm{ml}(1.7$ m mol) in absolute ethanol was refluxed for 10 h . The resulting precipitate was collected by filtration and recrystallized from methanol/ chloroform mixture which yielded $0.31 \mathrm{~g}(53.63 \%) \mathrm{m} . \mathrm{p} .>300^{\circ} \mathrm{C}$.

Analysis:	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3}$	Required:
	$\mathrm{C}, 50.57 ; \mathrm{H}, 4.21 ; \mathrm{N}, 26.8$	
	$261)$	Found:
$\mathrm{C}, 49.6 ; \mathrm{H}, 4.4 ; \mathrm{N}, 26.5$		

Synthesis of 3-N-acetyl-5,7-dimethylpyrazolo [3,4-d] pyrimidine-

 4,6-(5H, 7 H$)$-dione 6:A mixture of $0.39 \mathrm{~g}(2 \mathrm{~m} \mathrm{~mol})$ of $\mathbf{1}$ and ethylacetoacetate $0.212 \mathrm{ml}(1.7$ m mol) in acetic anhydride was refluxed for 6 h . The resulting precipitate was collected by filtration and recrystallized from acetone which yielded $0.43 \mathrm{~g}(54.4 \%) \mathrm{m} . \mathrm{p} .205-207^{\circ} \mathrm{C}$.
\qquad
Analysis: $\quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3} \quad$ Required: $\mathrm{C}, 45.56 ; \mathrm{H}, 4.64 ; \mathrm{N}, 29.53$

Found:
C, $45.8 ; \mathrm{H}, 4.4 ; \mathrm{N}, 29.2$

Synthesis of 5,7-dimethyl-1'-phenylcarbamide-3,3'-pyrazolo [3,4-d] pyrimidine-4,6-(5H, 7 H)-dione 7:

A mixture of $0.65 \mathrm{~g}(3.3 \mathrm{~m} \mathrm{~mol})$ of 1 and $0.36 \mathrm{ml}(3.3 \mathrm{~m} \mathrm{~mol})$ of phenylisocyanate in dry benzene was refluxed for 17 h . The formed product was filtered and recrystallized from acetone to yield 0.8 g (77\%) m.p. $240-241^{\circ} \mathrm{C}$.

Analysis: $\quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{3} \quad$ Required: $\mathrm{C}, 53.50 ; \mathrm{H}, 4.45 ; \mathrm{N}, 26.76$ (314) Found: $\mathrm{C}, 53.20 ; \mathrm{H}, 4.20 ; \mathrm{N}, 26.4$

Synthesis of 3-N-methylenecyanoacetate-5,7-dimethylpyrazolo $[3,4-\mathrm{d}]$ pyrimidine $-4,6-(5 \mathrm{H}, 7 \mathrm{H})$-dione 8 :

To a mixture of $0.39 \mathrm{~g}(2 \mathrm{~m} \mathrm{~mol})$ of 1 and $0.33 \mathrm{~g}(2 \mathrm{~m} \mathrm{~mol})$ of ethoxymethylenecyano acetate in ethanol was added 10 ml ethanolic solution containing (2 m mol) of diethylaminopyridine. The reaction mixture was refluxed for 6 h . The resulting precipitate was collected by filtration and recrystallied from DMF to give $0.29 \mathrm{~g}(53.7 \%)$ m.p. $270-272^{\circ} \mathrm{C}$.
Analysis: $\quad \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{4}$ (318)
Required:
C, 49.05; H, 4.40; N, 26.40
Found:
C, $49.40 ; \mathrm{H}, 4.70 ; \mathrm{N}, 26.0$

Diazotization of 3-amino5,7-dimethylpyrazolo(3,4-d)-pyrimidine$4,6(5 \mathrm{H}, 7 \mathrm{H})$-dione 1 and coupling with active methylene compounds to give compounds 9, 10 and 11:

General Procedure:

A stirred solution of (0.01 mol) of 1 in 70% nitric acid (d. $1.42 ; 10 \mathrm{ml}$) was diazotized at $0-5^{\circ} \mathrm{C}$ by adding 30% aqueous sodium nitrite solution $(20 \mathrm{ml})$ over 20 minutes. The reaction mixture was stirred for 1 h . To the previous diazotized solution, (0.01 mol) of the appropriate active methylene compounds was added at $0-5^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 2 h . The formed products were filtered off, washed with sodium bicarbonate solution followed by water and recrystallized from the proper solvent as shown in (Table 1).

Table 1:

Cpd. No.	$\begin{aligned} & \text { M.P. } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Yield \%	Solvent of Cristallization	Mol. Formula (M.Wt.)	Analysis Calc./(Found) \%		
					C	H	N
9	>300	61.1	$\mathrm{CHCl}_{3}+\mathrm{EtOH}$	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{O}_{5} \\ (362) \end{gathered}$	$\begin{gathered} 43.09 \\ (43.40) \end{gathered}$	$\begin{gathered} 3.8 \\ (3.6) \end{gathered}$	$\begin{gathered} 30.9 \\ (30.2) \end{gathered}$
10	>300	50.5	DMF	$\begin{gathered} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S} \\ (350) \end{gathered}$	$\begin{aligned} & 37.7 \\ & (37.7) \end{aligned}$	2.8 (3.1)	$\begin{gathered} 32.0 \\ (31.6) \end{gathered}$
11	>300	50.8	DMF	$\begin{gathered} \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{O}_{3} \\ (380) \end{gathered}$	$\begin{gathered} 53.68 \\ (53.70) \\ \hline \end{gathered}$	$\begin{gathered} 4.2 \\ (3.8) \\ \hline \end{gathered}$	$\begin{gathered} 29.4 \\ (29.1) \end{gathered}$

Synthesis of some fused pyrimidine

Synthesis of 7-amino-1,3,5-trimethylpyrazolo-[3,4-d]-pyrimidine-$4,6-(3 \mathrm{H}, 5 \mathrm{H})$-dione $12 \mathrm{a}:$

A mixture of $0.332 \mathrm{~g}(1.7 \mathrm{~m} \mathrm{~mol})$ of 3 and $0.088 \mathrm{ml}(1.7 \mathrm{~m} \mathrm{~mol})$ of methyl hydrazine in absolute ethanol was refluxed for 6 h . The formed product was collected by filtration and recrystallized from methanol to give $0.19 \mathrm{~g}(54.7 \%)$ m.p. $235-238^{\circ} \mathrm{C}$.
$\begin{array}{llll}\text { Analysis: } & \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2} & \text { Required: } & \mathrm{C}, 45.93 ; \mathrm{H}, 5.26 ; \mathrm{N}, 33.49 \\ (209) & \text { Found: } & \mathrm{C}, 45.84 ; \mathrm{H}, 5.2 ; \mathrm{N}, 33.2\end{array}$

Synthesis of 7-amino-3,5-dimethyl-1-phenyl pyrazolo-[3,4-d]-pyrimidine-4,6-(3H,5H)-dione 12 b :

A mixture of $0.665 \mathrm{~g}(3.3 \mathrm{~m} \mathrm{~mol})$ of 3 and $0.327 \mathrm{ml}(3.3 \mathrm{~m} \mathrm{~mol})$ of phenyl hydrazine in absolute ethanol was refluxed for 1 h . The formed product was collected by filtration and recrystallized from methanol to give $0.54 \mathrm{~g}(59.8 \%)$ m.p. $235-238^{\circ} \mathrm{C}$.

Analysis: $\quad \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2} \quad$ Required: $\mathrm{C}, 57.56 ; \mathrm{H}, 4.79 ; \mathrm{N}, 25.83$
Found: $\quad \mathrm{C}, 57.3 ; \mathrm{H}, 4.50 ; \mathrm{N}, 26.0$

* Synthesis of 7-amino-1-amide-3,5-dimethylpyrazolo-[3,4-d]-pyrimidine-4,6-(3H, 5 H$)$-dione 13:

To a solution of $0.665 \mathrm{~g}(3.3 \mathrm{~m} \mathrm{~mol})$ of 3 and $0.446 \mathrm{~g}(4 \mathrm{~m} \mathrm{~mol})$ of semicarbazide hydrochloride in methanol, was added dropwise a solution of $0.224 \mathrm{~g}(4 \mathrm{~m} \mathrm{~mol})$ of potassium hydroxide in 5 ml water, while the reaction mixture was maintained below $10^{\circ} \mathrm{C}$, the mixture was stirred at room temperature for 4 h . The formed product was collected
by filtration and recrystallized from acetone/water to give 0.42 g (53.16\%) m.p. $285-287^{\circ} \mathrm{C}$.

Analysis: $\quad \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{3} \quad$ Required: $\mathrm{C}, 40.33 ; \mathrm{H}, 4.20 ; \mathrm{N}, 35.29$ (238)

Found: \quad C, $40.60 ; H, 4.50 ; \mathrm{N}, 34.9$

Synthesis of 7-amino-3,5-dimethyl-1-thioamide-pyrazolo-[3,4-d]-pyrimidine-4,6-(3H, 5 H$)$-dione 14 :

To a solution of $0.665 \mathrm{~g}(3.3 \mathrm{~m} \mathrm{~mol})$ of 3 and $0.364 \mathrm{~g}(4 \mathrm{~m} \mathrm{~mol})$ of thiosemicarbazide in methanol, was added dropwise a solution of 0.224 $\mathrm{g}(4 \mathrm{~m} \mathrm{~mol})$ of potassium hydroxide in 5 ml water, while the reaction mixture was maintained below $10^{\circ} \mathrm{C}$, the mixture was stirred at room temperature for 6 h . The formed product was collected by filtration and recrystallized from ethanol to give $0.66 \mathrm{~g}(78.5 \%)$ m.p. $230-232^{\circ} \mathrm{C}$.
Analysis:
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S} \quad$ Required:
C, $37.70 ; \mathrm{H}, 3.90 ; \mathrm{N}, 33.07$ (254)
Found:
C, 38.8; H, 3.68; N, 33.2

Synthesis of 5-cyano-1,3-dimethylbarbituric acid 15:

To a solution of $0.165 \mathrm{~g}(1 \mathrm{~m} \mathrm{~mol})$ of $\mathbf{3}$ and $0.052 \mathrm{ml}(1 \mathrm{~m} \mathrm{~mol})$ of malononitrile in methanol, was added dropwise a solution of 0.115 g (1 m mol) of potassium carbonate in 3 ml water. The reaction mixture was refluxed for 1 h . The formed product was collected by filtration and recrystallized from methanol, which yielded $0.103 \mathrm{~g}(53.92 \%)$ m.p. 300 ${ }^{\circ} \mathrm{C}$.
$\begin{array}{llll}\text { Analysis: } & \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{3} & \text { Required: } & \mathrm{C}, 46.6 ; \mathrm{H}, 3.30: \mathrm{N}, 23.30 \\ & (180) & \text { Found: } & \text { C. } 46.2 ; \mathrm{H}, 3.0 ; \mathrm{N}, 23.1\end{array}$

Synthesis of some fused pyrimidine

Synthesis of 7-amino-3,5-dimethyl-isoxazolo-[3,4-d]-pyrimidine-$4,6-(3 H, 5 H)$-dione 16 :

To a solution of $0.332 \mathrm{~g}(1.7 \mathrm{~m} \mathrm{~mol})$ of 3 and $0.139 \mathrm{~g}(2 \mathrm{~m} \mathrm{~mol})$ of hydroxylamine hydrochloride in methanol, was added dropwise a solution of $0.112 \mathrm{~g}(2 \mathrm{~m} \mathrm{~mol})$ of potassium hydroxide in 5 ml water, while the reaction mixture was maintained below $10^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 6 h . The formed product was collected by filtration and recrystallized from ethanol to give 0.124 g (38.7\%) m.p. $240-243^{\circ} \mathrm{C}$.
$\begin{array}{llll}\text { Analysis: } & \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{3} & \text { Required: } & \mathrm{C}, 42.85 ; \mathrm{H}, 8.08 ; \mathrm{N}, 28.57 \\ & (196) & \text { Found: } & \mathrm{C}, 42.52 ; \mathrm{H}, 7.98 ; \mathrm{N}, 28.21\end{array}$

ACKNOWLEDGMENT

DANIDA, and Danish Ministry of Foreign Affairs are gratefully acknowledged for their support to carry out this work.
A.H. Abd El-Aleem et al.,

Synthesis of some fused pyrimidine

REFERENCES

1- J.P. Horwitz, J. Chau and M. Noel, J. Org. Chem. 29, 2076 (1964).

2- M. Okabe, R.C. Sun, S.Y.K. Tan, L.J. Todaroand and D.L. Koffen, ibid. 53, 4780 (1988).
3- C.H. Kim, V.E. Marquez, S. Broder, H. Mitesuga and J.S. Driscoll, J. Med. 30, 862 (1987).
4- "Merck Index", 11th ed. ... Compd. No. 8201. Merck Co., Rahway, New Jersy, (1989).
5- E.C. Taylor and F. Sowinki, J. Org. Chem. 40, 2329 (1975).
6- M. Abdel Azzem, M. Zahran and E. Hagagg, Bull. Chem. Soc. Jpn., 67(5), 1390 (1994).
7- M. Abdel Azzem and M. Zahran, Buil. Chem. Soc. Jpn., 67(7), 1880 (1994).
8- M. Abdel Azzem, G.E.H. Elgemeie, M.A. Neguid, H.M. Fahmy and Z.M. Elmassry, J. Chem. Soc., Perkin Trans. 11, 545 (1990).
9- S. Senda, K. Herota and T. Asao, Chem. Pharm. Bull. (Tokyo) 26(10), 3208 (1978).
10- S. Senda, K. Hirota, T. Asao and Y. Yamada, Synthesis, 463 (1978).

II- R. Behrend, F.C. Meyer and Y. Buchholz, Liebigs Ann. Chem. 314, 200 (1901).
12- K. Senga, Y. Kanamori, H. Kanazawa and S. Mishigaki, J. Heterocycl. Chem. 15, 359 (1978).
13- P. Matyus, L. Löwinger and H. Wanhoff, Heterocycl, 23, 2057 (1985).

Synthesis of some fused pyrimidine .

تنليّ بعض ششنتقات البريميدين الملتحمة و المتوفُّ لها نشاط بيولوجى
عبد العليم حسن ، مجدى زهران وحنان معروف

قسم الكيمياء - كلية العلوم - جامعة المنوفية - شبين الكوم - مصر دلخص البحت :

الهـف من هذا البحث هـو تحضـيز بعض مشتقات البريميدين المختلفة والتـى مـن اللمتوتحِ لها تأتبر بيولوجى - وكذلك تستْخذم أيضا في عملية الإزدواج مـع السـكريات اللمختلفة لنحضبير بعض الليوكليوزبيات والليو كليوتيدات الجديدة . وقد تم ذلك بتفـاعل
 إثيل أسيتو أسيتات فى أنميلدريد حمض الخليك ، فنيـل أيزوسيانات وإيثوكس ميثلين

 المقابل الأى يتفاعل مع بعض المثتتقات التى تحتوى على مجموعة الميتلين النشـطة مثل (،r-ثثائى ميثيل حمض الباربتيوريك ، حمض الثيوبـاربتيوريك وأُحد مشتقات البيز ازولون لتكون مشتقات بيريميدو الهيبر ازون المقابلة .
 فنيل هيدز ازين ، اللسيمكربازيد ، الليوسيسكربازيد ، هـالونونتريل والميدروكنــلمين

 الأشعة تحت الحمر اء وطيف الكتلة .

