30 54 50 jell (19 Prints

Menoufia University

Course Name: Electronics (2)

Mid-term Exam.

Faculty of Electronic Engineering

1st Year Students- 3/4/2019

Time: 1-hour

Name of Student.

Section No:

Acadimic No.

Part I: The Bipolar Junction Transistor

Question One: Multiple choice (chose the correct answer)

لاحظ أن: الأسئلة على الوجهين

- 1- The collector area is considerably greater than the emitter area. This is mainly due to:
 - (a) Its length should be greater than the minority carrier diffusion length.
 - (b) More doping than the emitter.
 - (c) Handel more power, hence more surface area is required for heat dissipation.
 - (d) Its area controls the amount of collector current.
- 2- The base width is small compared to:
 - (a) The minority carrier diffusion length.
 - (b) The base majority carrier diffusion length.
 - (c) The collector-base junction depletion width.
 - (d) Both (a) and (b).
- 3- The current components in a BJT are all diffusion currents. Since
 - (a) No potential difference within the depletion regions.
 - (b) The electric field is confined in all three regions (emitter, base, and collector).
 - (c) There is an electric field within the space charge regions.
 - (d) The potential is constant in all three regions (emitter, base, and collector).
- 4-is the most frequently encountered transistor configuration.
- (a) Common-Emitter (b) Common-Base (c) Common-Collector
- 5-is the configuration used for matching purposes.
 - (a) Common-Emitter (b) Common-Base
- (c) Common-Collector

Question Two:

Sketch a figure to describe the majority- and minority-carrier flow of an pnp transistor. Describe the resulting carrier motion.

Question Three:

Using the output characteristics given in Fig.

- (a) Determine β_{dc} at $I_B=30~\mu A$ and $V_{CE}=10 V$, then calculate α_{dc} and the resulting level of I_E .
- (b) Determine I_{CEO} at $V_{CE} = 10 \text{ V}$.
- (c) Using the $\beta_{\rm dc}$ determined in part (a), calculate $I_{\rm CBO}$.

