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ABSTRACT- Discrete forms of the Fourier, Sine, Cosine, Hartley,
Walsh, and Baar transforms are examined for their performance ¢to
compress the electrocardiographlc (ECG) signals. To compare their
effectiveness in accomplishing this goal, the percent RMS
difference resulting for each transformation wmethod at various
compression ratios is computed for records of normal and abnormal
cases. Based on this comaprison, it is found that the Hartley
transform is most advantageous for compresssing the ECG signal as
it provides higher compression ratios and lower percent RMS
differences compared to the other five transforms.

I. INTRODUCTION

Orthogonal transforms are one of the powerful techniques for
data compression. The compression procedure invalves
preprocessing the input signal by means of a lineazr oxrthogononal
transform such as Fourler, Karhunen-Loeve, Walsh, Haar, .
etc., and properly encoding the transformed output (expansion
coefficients) and reducing the amount of data needed to
adeguately represent the criginal signal. Upon signal
reconstruction, an inverse transformation is performed and the
original signal is zecovered with & certain degree of erxror.

Many discrete orthegonal transforms have been employed to
electrocardiographic (ECG) data compression. The discrete Cosine
transform {CT), the Haar transform (HT), and the Karhunen-Loeve
transform (KLT) have been applied, resulting in a compression
ratio (CR) of 3:1 (11. Dual application of the KLT [2} to a
vector lead BCG (X, ¥, and 2 leads of the vectorcardiogram in the
Frank .coordinate system! partitioned into a P wave and & QRST
segment have resulted in a CR of 12 : 1. Use of Fourier transform
(PT) in two-lead ECG data compression has also been reported [3]
giving & CR greater than 7.4. Discussion on the employment of the
fast Walsh transform in ECG signals is given in {4) and further
study is reported in (5] resulting a CR of 8. Application of the
discrete Hartley transform (DHT) has been reported in (6] and
resulted in a CR of 12 :1. However, due to The diverse procedures
that bave been employad in each application, it would be improper
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to compare these methods in absolute terms of values given for CR
and percentage error as they have been obtained under different
conditions of sampling rate, presicion, and noise 1level, and
thelr performance have been evaluated using dlfferent indexes of
error. To arrive at an exact comparison, a larqe set of ECG's
from a common database needs to be processed by all ECG
compression techniques and thelr performance needs to be
evaluated with a common measure of "goodness" (71,

In the present paper, a comparative study 1is presented to
evaluate the performance of six oxrthogonal transforms. These are:
Fourier, Cosine, Sine, Hartley, Walsh and Haar transforms. The
study was conducted using records of human ECG's for normal and
abnormal cases. In the following section of this paper, we
present the theoretical basis behind data compression via
orthogonal transforms and a general introduction to each
transtorm is given. The third section includes a description to
the database used for evaluation. The fourth section is devoted
to the description of the compression scheme using orthogonal
transforms and the implementation of each ftransform. Ewvaluation
of the performance of the transforms technigues and sSome
representative results are presented in the fifth section for a
number of normal and abnormal cases by reconstructing real ECG
signals.

I1I. ORTHOGONAL TRANSFORMS FOR DATA COMPRESSION

., X ] andg

Consider a discrete data vector X' = [xo Mot

PR

MN-1

ceer ¥, B1E orthogonal real-valued vectors, 1l.e. vectors having

the property yiuu = 6u {Kronecker delta) or PTP = 1 {unit = =« N

an orthogonal transform P = [wo, LT ]T, where L Yo

matrix). Applying P upon X gives transformed vector components

Y, = gT X or in matrix form

Y = pX, zT={yo, Yoo eeer Yo,) (1)

Premulitiplying (1) by p’ and using the orthogonality of P gives
the inverse transform

N~1
X = p¥ ¥ =2 ¥, (p" = p™) (2)
=0

Clearly, P and P™* are linear inverse transforms. The basic
problem 1s to select a family of vector functions Vo ¥ .
LA such that the signal X can be reconstructed or estimated
using a smaller number of terms YW, v T 0, 4, .., Mo This

implies that only m < ~ data values y ., have to be used ot
transmitted for reconstructing X as '

N-1

M-1
X = 2 Y"V’L * E CLwi (3)
=0

=M
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vhere c_are preselected constants. Using fewer data points or
transform coefficients Y,r we have what Is known as "data

compression” which allows to transmit the information signal X
approximately with reduced information rate, & result which \is
mostly important in practice.

II.1L The Optimal Transform

Since we are interested in dropping some of the
coefficients, we may also want the error (mean-sgquare) in
reconstruction of X, due to dropping of some coefficients be the
least. Also we would like signal energy to be compacted into as
few coefficients as possible. Fortunately, thexre is one transform
that satisfies this criterion , and it is known as the Hotelling
transform or Karhunen-Loeve transform (KLT) [(8). The optimum
transform can be computed from the covariance matrix Cx

C = E ({X - E(X)).(X - E(X))"} (4)

where E is the statistical expectation and superscript v denotes
transpose. Indeed, the mean sguare error V 1is given by

V= FE {(X - E(X)}T (X ~ E{X)))}
-1
2
=§ E tly, - ¢’} (5)
=M

and the optimality conditions 6V/act= 0, avxau1= 0 subiject to
yﬁw: = 1 give, tespectively:

T
c. = E I y\' ] = WL E(X);
v =AW (6}

where Kl are the Lagrange coefficients for the constralints w?ﬂ=
1. This shows that g_is an eigenvector of Zx and LL is the

corresponding eigenvalue. Now from Y = PX we obtain

T =P3 P'=PxT P =4ailag (N, A, ..., A ] (7)
¥ ® % & 1 N-1
i.e. Zy is diagonal which implies that the components of y  are

uncorrelated.
The minimumr value Vo is obtained by substituting (6} into

(5); j.e.

N=-2
V.= 2 V’L TV = 2 WT >\"L wr. = z ?\\. (81
; =M
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This shows that Vo is equal to the sum of the elgenvalues
corresponding to the data components Y, which are discarded. Thus

in practice, one must keep the ™M data components having the
largest eigenvalues. The discarded data components are treplaced

by the constants c, = wT Eix) which can be reduced to zero by

preprocessing the given data such that E(x) = 0. This data
cempression criterion for selecting the set of Y, components with

the largest varlances 1s known as ‘"Yvarlance data compression
criterion". Note that for all other o¢rthogonal transforms the
covariance matrix Ey is not diagopal {9).

An alternative way of expressing the above i1s to use a set
of basis vectors ¢1, P ¢N which are orthonormal and then

represent X as a linear sum of these hasls vectors, l.e.,

L= a g (3)

1z

It is well known (91 that the optimum a  which minimize the erxoz

i
between X and its representation (i.e.,L;iéL¢‘] are given by
- L

a = %"e (10)

1 1

dJow instead of storing signal samples, we store {aL} only. In

order to achleve the maximum degree of compression, we would like
to store as few {aL} as possible, without a significant error in

the reconstruction of X. The basis vectors which compact maxinmum
energy in the fewest {ai} turn out to be the elgenvectors of the

covarlance matrix c - Thus the KLT provides us with the optimum

baslis functions fcr representing a signal.

Although the optimum transformation is explicitly known, its
use in practice presents many problems (7]. Filrst of all, the
computaticnal time needed to calculate the KLT basis vectors are
based on determining the elgenvalues and corresponding
eigenvectors of the covariance matrix of the original data, which

can be 3 large symmefric matrix, Its implementation reguires N°
multiplications by constants which may be complicated (i.e., not
simple powers of 2 for easy binary arithmetic). The second
problem is in the computaticn of the eigenvectors of Cx. In many

cases this matrix CX turns out to be singular, ahd then some

eigenvectors cannct be uniquely defined. The lengthy processing
requirement of the KLT has 1led to the wuse of suboptimum
transforms with f£ast algorithms [7].

1I.2 Suboptimum Transforms

Many other transforms have been invented which produce less
correlated coeffiecients than the signal itself and whilch are
easler to implement. Some of the popular transforms are:
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1) Discrete Fourier Transform [(DFT)

A = Matrix {a 1
)

vhere eLlj = 2 exp [~2u Y -1 () ] {11)
Y W

2) Discrete Cosine Transform (DCT}

2K (L}
a, = cos [i?] + 1)ur/2H ] (12)

t)
L
lf‘f‘ 2, foxr

=1
where Ki{i) = { 1, for « = 2,..., N
0. otherwise
3} Discrete Sine Transform (DST)
a = 2 Sin (m(itl) (41} /(N+1) (13)
i N + 1
4) Discrete Hartley Transform (DHT)
a, = cos(2ri)/N) + sin (2nri;/N) {14)
5) Discrete Walsh Transform (DWT)
b,
=1 _
;s — ¢V (15)
¥ N
k=1
where bli,j) = L
L=0
The terms H and ﬁ are the bit states of the binary
representations of i and ;, respectively.
&) Discrete Haar Transform (HT}
a. =1 for 0 < n < 1
5]
2 1 -1 - 1/2
- 5 } fox - £ n 8 —
- 2" 2"
iz ;) - /2 j
= ~ 2 for e =n = .
2 2

= 0 elsevwhere {16}
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The set of orthogoenal functions may be any one of many
different types. In the Fourier, Cosine, Sipe and Hartley
transforms, the orthogonal functions are discrete sampled sines
and/or cosines as illustrated in Fig.l for N = 16. In the Walsh
and Haar transformations, the orthogonal functlons are discrete
sampled walsh functiens [(10) (Fiag.l].

I1I. DATA ACQUISITION

35-sec Lead II ECG signals were recorded using a Philips ECG
recorder type XV1503. The signals vere separated into two
¢lasses, namely normal and abnormal. The abnormals showed old
inferior infarctlon. The bandwldth cf the signal wvas chosen teo be
100 Hz. The output of the ECG recorder was then connected to a
12-bit analog-to-digital converter and sampled at a rate of 250
samples/sec. The digital data were transferred to an IBM PS2/80
computer by a program written in Basic.

IV¥. THE COMPRESSION SCHEME

IV.1l Preprocessing

The method of orthogonal transforms reguires delineation of
the QRS complexes. This is usually accomplished wusing a search
procedure based on the first derivative of the signal. ©Once the
QRS is detected, backward and forward searches are performed with
a lower threshold to locate its beginning and end. Each ECG beat
was represented by 256 samples. These samples were chosen such
that the QRS complex and the T wave would always appear.

IV.2 Implementation

Fig.2 shows a block diagram of the compression scheme. The
input to the scheme 1s the ECG signal X of length N samples. The
forward transform yields the coefficients aj. The coefficients
to be retained are lower order harmonics. The number of

coefficients L to be retained to achieve a given compression
ratlio CR ls given

L = N/CR (17)

The higher order harmonics for each transform are discarded. For
reconstruction, N-L zeros are added to the L coefficients and the
resulting seguence is inverse transformed. The reconstructed
waveforms are compared to the original signals Dby visual
examlnation of plotted waveforms and also by a measure of
goodness as described in the next subsection.

The obvious difference between these transforms and the KLT

is the gase of implementation. All the above transforms are
* - *
unitatry, 1.e., AT = aT'ivhere AT 1s the complex conjugate of

AT}, and therefore Iinverse transformation which is done for
reconstruction i{s as the transformation itself.
The discrete Fourler transform was implemented by using the

fast Fourler transform technique [(11]. TInstead of the NZ
multiplications xequired for the computation of the DFT,

2N logz N multiplications and additions are reguiread. The

discrete cosine transform was Iwmplemented by a technique
develeped by Makhoul (12} using W log, M <real multipllcations.

The Slne transform was computed uslng a f£ast algorithm developed
by Yip and Rao {13). The discrete Hartley transform was
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Fig.l The basis g¢rthogonal functions of the transforms
used (N =16) (a} Fourier, (b} Cosine, {c) Sine,
{d} Hartley, (e} Walsn, and {f) Haar.
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input N=POINT “ RETAIN L RETAINED | L-POINT reconstr.
—1—r—’— FORWARD — LI COEFFICIENTS > INVERSE —-——v—-—_T
signa COEFF. signa
TRANSFORM SET OTHERE TO TRANSFORM
ZERD

compression ~—— | —=reconstruction

Fig.2 Block Dlagram of data compression scheme using
orthogonal transforms

implemented wusing a radix-2 decimation-in-time fast Hartley
algorithm [14). The walsh transform ls the simplest to lmplement,
since it consists of * 1's and, therefore, only additions and no
multiplications are required. However, fast algorithms have been
developed that can compute an N-point Walsh transform in N 1ogz N

rather than Nzoperatians [15]. The Haar transform was computed
using a fast Haar transform algorithm (16}

1V.3 Performance Index

In order to assess the performance of the compresslon
scheme, iln addition to visual comparison, an index of performance
wvas employed. It represents a measure of "goodness" of the
reconpstructed waveforms. Thls index is the percent RMS difference
(PRD), which is computed as

i 172

3 [xm 2 ‘;((i)]
PRD = "“N * 100 (18}
2

in [xu)]

vhere X and X are samples of the original and reconstructed data
sequence.

Using this method, we can either compute the error between
the original and reconstructed waveforms for a speciflied
compression ratiec or obtain the permissible ratlo £for the
speclfied error limit.

2

V. RESULTS

Flg.3 shows a typical normal ECG record. Fig.4 depicts 1its
six spectra corresponding to the six orthogonal transforms,.

23 ECG

sarmplea

Fig.3 A typical ECG signal (normal record!}
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Fig.4 Spectra of the six orthogonal transforms of the signal
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TABLE I

Percent RMS Differences for wvaricus orthogonal transfornms
{ncrmal cases)

Compression |Coeff. APRD
FAEAD! CF reEa‘“" OFT BCT DST DHT OWT qT
5.1 20 36.60 |26.18 6.37 1,97 9.07 9.49
6.4 30 36.92 |36.07 8.67 2.52 11.27| 11.43
8.6 40 37.97 |36.15 11.19 3.65 13.38| 15.06
12.8 50 46.70 149.36 20.30 13.97 23.30| 28.24

Figs.(5,6) show reconstructed waveforms {dotted line}
superimposed over the original signal {continuous line) for each
transform using compression ratios CR = 6.4, 12.8 respectively.
Fig.7 shows the results of compressing and reconstructing an
abnormal record using CR = 8.6. As seen from the figures, as the
CE value increases, the more distortion in the shape of the - beat
occurs. The figures also show that the two transforms resulting
in the lovest distortion are the Sine and Hartley transforms. The
other four transforms produced major variations even in the level
of the 1isocelectric 1line o0f the ECG =signal and, therefore,
resulting changes in the magnitude of the R-wave with respect teo
the isocelectric line. Inspection of the figures of the Hartley
transform shows that the information lost as a conseguence of the
data compression is not diagnostically significant: the Sire
transform yielded more oscillatory wvariations.

The performance indexes described in Section 1IV.3 were
computed for twc hundred ECG beats of which half were normal and
the other half were abnormal. Table I summarizes the average
PRD's (APRD) for the different transforms using CR = 5.1, 6.4,
B.6, and 12.8 in case of normal records. The APRD values obtained
for the abnormal signals are summarized in Table II. The results
tabulated confirm the visual comparison. The Hartley transform
possesses higher capability to restore the original signals with
the lowest APRD's value.

TABLE II

Percent RMS Differences for various orthogonal transforms
(abnormal cases}

Compression |Coeff. APRD

ratio CR refaln' DFT DCT | DST DHT DWT AT
5.1 20 34.65 |29.96 6.45 2.03 9.87, 8.47
6.4 30 [36.97 [28.84 8.35 3.44 | 13.56| 12.32
3.5 40 |37.24 |a5.84 | 12.58 5.89 | 23.39| 28.a2
12.8 50 |45.75 [50.12 | 22.47 | 14.95 | 25.34]| 29.44

VI. CONCLUSION

In this study, six orthogcocnal transforms were Iimplemented
and evaluated for ECG data compression. The six transforms are:
Fourier, Cosine, Sine, Hartley, Walsh, and Haar. Implementations
of these transforms were carried out using £fast technigues
derived from their dliscrete verslons. )
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The performance of the six orthogonal transformatiocns was
investigated in terms of the percent RMS difference PRD between
the reconstructed and the original waveforms of recerds of normal
and abnormal cases. This has demonstrated that the Hartley
transform is the most efficient and accurate transformation that
can be used safely for ECG data compression. It allows the
restoration of the compressed signal with the lowest PRD value
for the same compression ratic.
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