
Sci. J. Fnc. Sci. MenouJin Univ. Vol. V M (1994)

KNOWLEDGEABLE MULTIUSAGE DATA DICTIONARY

BY
Dr. Hany M. M. Harb

Azhar Uiliversity, Faczrlty Of Engineering,
Computers and Systems Engineering Department.

ABSTRACT
;Tir~is paper disczmes the design and implementation of a

knowledgeable data dictionary. Tkis knowledgeable dictionary is

nmiirly designed to be associated with the relational database systems,
bzrt can be extended to be associated with other iiformation systems

like howledge based systems. It can be installed as a general, stand

alone package, or it can be integrated into ai7 information system. It is

based oil relation as its data str~rcture to be compatible with the

relational d~trrbase system, so both have the same SQL interfnce.

KEYWORDS

system analysis and design, data dictionary, knowledge based system,

natural language.

1. INTRODUCTION

The data dictionary is essential in information systems and it

may be called system catalog. Supporting an active on-line catalog is

one of the Codd's twelve rules to determine what the relational

database is [I]. The knowledgeable data dictionary (KDD) defines the

data adrnissibie to a system in a knowledgeable form. TheKDD

names, classifies, represents, uses, and administers the system data and

knowledge. It also defines the location of data within an information

system (traditional system, database system, or knowledge based

system), so it may be defined as an ideai path for access and retrieve in

information systems. To support this function, this presented KDD A

contains also descriptions of report formats, screen menus, data

records and files and input and output formats.

The KDD, as a system, has elements, environments,

interactions between these elements, and the goals. So in general, KDD

can be defined as a system organized of data, knowledge, documents,

data and knowledge representation models, report formats, screen

displays, input transactions, and procedures.

The MDD adds meaning to the stored data by storing its

associated semantics. Knowledge has higher level of meaning because

it represents information that can be potentially useful in fbture

decision situations.

The KDD either as a stand alone or as an integrated

information system is designed to satisfjr the following goals:

effective processing and management of data,

flexible handle storage and retrieve of data,
o user friendly access, maintenance, and reporting

0 efficient access and retrieval path of the associated knowledge

based systems, if any.

To support the above goals, the KDD must have the following basic

requirements:

adequacy in documentation and in knowledge definition,
d

e data and knowledge representation efficiency,

menu and/or forms facility, and

Knowletlgenble Multi~tsoge Dado Dictionmy

r structure modularity.

The major phases of KDD development process are discussed as

follows. The determination of KDD goals and its basic requirements

as previously stated is considered as the first phase. After goals and

requirements determination, the KDD architectural design can be

designed. Then, as the third phase, the KDD can be physically

designed. In this phase, for example, dictionary entity format is

determined in detail. The good design should consider maintenance,

security, and enhancements.

As the fourth and last phase, the knowledge representation

tool and the data structure are picked to build the KDD. The KDD
operations to process and manage the dictionary are also defined in

this phase.

The dictionary has to be carehlly documented. Section 2

introduces the architectural design of the KDD. Section 3

discusses the KDD implementation and the frame as a knowledge

representation tool to represent the KDD entities.

2. DESIGN

The KDD, as has been mentioned in previous sections,

contains information concerning various objects that are of interest to

the information system itself such as data, reports, schema, security,

and so on as shown in Fig. 1. The KDD iterative process consists of

analysis, desisn, and implementation phases as depicted in Fig. 2. In

the analysis phase, the requirements and objectives are determined. The

objectib-es and requirements of this presented dic~ionary sre discussed

in section 1.

The KDD keeps track of information about information system

such as data structures (for example tables, columns, and indiees

displays (forms), reports, users, views, etc. In this phase, only

relational database system, as a type of information systems is k

considered. Other information system types are discussed as h ture

research.

KDD data types
I

I I I I I
data (knowled~e) outputs inputs documentation ormat

I I I
- naming - report - transaction -file

- usage - form - data (kno~vledge) - entity

- ~Iassification - schema

- administration - sub schema

- representation

Figure (I): The KDD Knowledge types

KDD Development
I

--

I I I I
I. I.Anal\-sis 11. Design JJJ. Implementation IV. Documentation

I I I
- requirements - functions - knowledge
- goals - structure representation
- logical model model

- operations
Figure (2): The KDD knowledge Phases

2.1 The KDD Data Structure

In the relational database system we should keep information

about many things. These information are kept in tables to be

compatible with the data structure of the relational database system

itself There are different tables supported by the KDD: KDD-table,

KDD-column, KDD-table-column, KDD-index, KDD-index-column,

KDD - column - column, KDD-user, KDD-form, KDD - report,

KDD-menu, KDD-view.

Each table in the information has a row in KDD-table which keeps

table name, table degree (number of attributes), cardinality (number of

rows), table description, table security (who is authorized to do what

is on this information system table mentioned in this row), table

creator (table owner), last table structure alter time, last table data

modification time (insertion, deletion, modification), and last table

data retrieve time. Table security includes the authorization to add

coIurnn(s), drop coIurnn(s), mod@ column(s) definitions (column

name, column type, null acceptance), insert tuple(s), delete tuple(s),

modify data values. Security field may contain any combinations of

characters: a.p.c,i,d,m,r,x,y. If a character appears, then the

corresponding right is allowed, otherwise it is prohibited. The meaning

of each character is explained in Table 1.

Table 1: KDD - table table definition

attribute
name

tname
tdegree
tcard
tdesc
towner
rtime
atime
mtime
tmode

a t t r ibute meaning

table name
table degree
table cardinality
table description
table owner
last retrieve time
last alter time
last update time
security mode

a: column add
p: column drop
c: column characteristics modification
i: tuple insertion

d: tuple deletion
m: data modification
r: data retrieve
x: index add
y: index drop

attribute
tYI'e

char
numeric
numeric
char
char
date
date
date
char

Each column in the database has one row in the

KDD-column table with three attributes explained in Table 2 . Different

columns in different tables may have the same name. All the same name

columns correspond to sinsle row in this table, but different rows in

the KDD-table-column.

Table 2: KDD cotumn table definition

I field name field meaning field type

cname database column name char
cdesc column description text char
C t \F column type

(integer. decimal.char) char
number-of-tables number of tables in which the

column name esists.

A column may appear in more than one database table with

different characteristics, so another table, KDD-table-column (Table

3), is needed to describe column appearance in each table to which it
belongs, pk-or-fk states whether the column is a primary key (pk), a

partial primary key (ppk), a foreign key (fk), partial foreign key (pfk),

or a regular column (reg). The indexed field determines where there is

an index wholly based on this column (wi), partially based on this

column (pi), or it is not indexed (ni).

The column types differ from database management to another,

but most of them are serial, integer, real, decimal, date, money, and

interva1.
A. Table 3: KDl)_table-column table definition

I field name field meaning

number-of-nulls
indesed

rtime
atime
mtime
cmode

table name
column name
column ope
key attributes

(pk, ppk, fk, pfk&
number of nulls
indexing attributes
(wi, pi? rii)
last column data retrieve time
last column type alter time
last column data modification time
column security mode

c: column type modification
m: column data modificarion

field type
char
char
char
char

numeric
char

date
date
date

char

I r: column data retrieve

There are two tables to keep data about indiees. The

KDD-index table (Table 3) expresses if an index accepts duplicate or

unique values and the name sf the rable to which the index belongs.

Since an index may be based on one or more than one column., the

Hnny M. M. Hnrb

columns on which the index is based are kept in another table,

KDD-index-column table (Table 5).

Table 4: KDD-index table definition
w

field name field meaning field
type

iname index name char
tname table name char
itype index type char

u: unique index
n: non unique index

Table 5: KDD-index-column

I field name field meaning field tvpe I
iname index name char
cname column name char J

A domain may be defined as a set of values of the same type

fiom which the actuai values appearing in attributes are drawn. One or

more than one column may be drawn from a domain. The number of

domains for a database system should be minimized. Generally,

attributes drawn from the same domain can be compared. In other

words, if two attributes drawn from different domains, then

comparisons and hence joins and other operations invohing these two

attributes may not be legal . This is not always the case. since it still d

makes sense to compare different columns drawn fiom different

domains. So, the KDD should support what may be called semantic

override comparison (or domain check override) allowing that an

operation is allowed even if involves a cross-domain comparison.

Since domain concept is supported in most database s!.stems, every

Knmvledgenble Multiusnge Dntn Dictionary

pair of attributes that cannot be compared are kept in the

KDD - column - column table (Table 6).

Table 6: KDD - column - column table definition

field name field meaning field type
c 1 name first column name char

I tlname first table name char I
c2name second column name
t2name second table name char char I

Every row defined in the information system corresponds to

one row in the KDD - view table whose structure is expressed in Table
n

7. A view definition is expressed in vquery field. A view is a virtual

table based on one or more base tables. The view does not exist in its

own right, only its definition in terms of other tables (base table or

other views) is stored in the catalog

Table 7: KDD-view tabie definition

r,

field name field meaning field type
vname view name char
vquery view definition in terms of other tables char
vstatus view status char

u: updatable view without check option
c: up datable with check option
n: not updatable

v o w e r view creator char
ctime creation time date
mtime last modification time if updatable date
rtime last access time date
vmode view securitv mode char

KDD-view table (query field). Changes to table(s) are automatically

and instantaneousIy visible through the view based on these tables. If a
view is updatable, then changes to this view are automatically and

instantaneously applied to the tables on which the view is based. Not

all views are updatable [2], in other words not all views are allowed to

be inserted, deleted, or modified. If a view is updatable, modification

and insertion operations can be checked to ensure that every updated

or inserted tuple still satisfies the view defining condition. The vstatus

expresses the view status as it is updatable, updatable with check, or

not updatable at all.

The user identity is stored in KDD-user table as user name,

user type, and any other comment about the user. The capabiIity for

each user is kept in KDD-user-entity. As has been shown, there are

different levels of security: table mode (index mode, form mode,

report mode) level, column mode level, and user mode level. The

column mode level ovemdes the table mode level and the table mode

level overrides the user mode level. For example, if a user is given

access to a table, but the table is protected against this access, the user

can access the table.

Table 8: KDD-user table definition

field name field meaning fieid type I
char I uname user name 4

user classification
dba: database administrator

Knowledgeable Multiustige Data Dictiontiiy

Table 9: KDD-user-entity table definition

field name field meaning field type

uname user name char

ename entity name char

e t P e entity type char

(table, column, index, form, report) char

urnode user capability list on this entity

Every form has a row in KDD-form table with form name,

form creator, last modification date and time, and form protection

A mode. The form security modes are read, write, and execute as r,w,x
respectively. For example if the fmode contains rx string, then the

form can be read and executed.

Every report has a row in KDD-report table with report name,

report creator, last modification date and time, and report protection

mode. The report security modes are read, write, and execute as r,w,x

respectively. The primary key of KDD tables are list in Table 12.

Table 10: KDD-form table definition

field name field meaning field type
kame form name char
fowner form creator char
rntime last modification time date
h o d e form security mode char

r: read
w: write
s: execute

Table 11: KDD report table definition
field name field meaninq field type

rname report name char
rowner report creator char
mtime last modification time date
rmode report security mode char

r: read
w: write
x: execute

Table 12: KDD tables primary keys
- -

table name primary key

KDD-table tname

KDD-column cname

KDD - table-column tname,cname

KDD - index iname

KDD-index-column iname,cname

KDD~colurnn~column c 1 name,c%name

KDD-view vname

KDD-user uname

KDD-user-entity uname, ename

KDD-form fname

KDD report rname

3. Implementation

The KDD, as another option, can be installed and integrated

into the information system. In this case. there is no need for the

MI)D administrator io submit direcriy any data. Instead, there is a

KDD built-in interfxe between the information system and the E(DD

which automatically updates the data in the dictionary as a

consequence of each committed information system transaction. The

menu driven user interface still exists, but only allowing the user to

retrieve data from the dictionary. The JSDD can be submitted as a

stand alone package with SQL query language as an interface (so it

may be different from the information system interface, if the

information format ion system does not have SQL interface). This

interface allows the information system administrator to manipulate

the dictionary (or any other user that knows the dictionary password).

To overcome this difficulty a user hendly menu driven interface is

supplied as part of the KDD. For stand-alone KDD, the information

system administrator himself submits all kinds of data to the KDD. The

KDD has some rules to validate the integrity of the submitted data.

The menu-driven user interface has a layout as shown in Figure

3. The interface main menu has 5 options: Maintenance for data

dictionary update, Info for information, SQL for SQL interface,

Check for dictionary repair, and Exit for package quitting. The

maintenance option allows the dictionary user to insert, delete, and

modiQ any table values. A profile file may also be edited to customize

the KDD environment. The user can highlight any menu option either

by arrows or by a space bar. The highlighted option may be picked

by enter, or any option may be picked by pressing its first letter. The

KDD applies integrity rules as entity rule and referential rule. For

esample, a database table can not appear in any KDD table unless it

esists first in KDD-table table, a column cannot appear in any KDD

table unless it exists first in KDD - column table. This option is active

only if the KDD acts as a stand-alone package since if the KDD is

integ-ated into relational database system, the KDD data is updated

automatically through another provided interface (hidden tiom the user).

Info option allows the user to get information about any table

either database table or KDD table. The user may have the list of all

tables and for any selected table (current table), the user may list its

columns, indexes, and its security modes. For any selected column

(current column), the user may check its type, its security modes, if it

accepts null and if it is indexed. The user may consult and update the

KDD tables through SQL option.

The Check option is a multi phase procedure checking the

violations of integrity rules, and producing a list of primary and

foreign keys. It also gives a warning message if a table name does not

exist in any table but the KDD-table table, and if a column name does

not exist in any table but the KDD-column table.

The user may customize the KDD environment by editing

KDDqrofile file. For example, the user favorite editor may be selected

to edit SQL programs and KDD tables by assigning KDD-editor

parameter to the full path name of the selected editor. KDD-home

may be assigned to a directory to be a home directory in which all

KDD tables will be resident. The full path name of a directory in

which the KDD procedures and commands are resident may be

assigned to KDDqath parameter. Other parameters are still available.

KDD-editor-full path of a user editor

IiDD-home=full path of the KDD tables home directory

IiDDqath=full path of KDD package directory

Knowledgeable Multiustrge Data Dictionmy

interface menu

I
c
I I I I

Check
I

Info Maintenance SQL Exit
- table - insertion
- column - deletion
- index - update
- user - profile
- view
- form
- report

Figure (3): user interface menu

4. Extensions
-i The KDD may be extended, so it can be associated with

knowledge based systems (KBS). The KBS includes a knowledge base,
7 knowledge retrieval and storing capability, query capability, response

reporting capability. The KBS can perform knowledge accessing

procedures and in so doing it relies heavily on its associated knowledge

dictionary. In other words, the KDD may assist the KBS parsing and

understanding capability by transhting the input message (query or

knowledge) into another format to be more efficiently processed by

KBS inference engine. Not only the syntzx of the KBS internals, but

also its semantics is saved in the KDD.

The extended KDD is made up of entries or items (an entry

may correspond to one or more item), each entry consists of the entry

identifier and its associated knowledge. There may be more than one

entry type. Different types have different sets of associated

knowledge; so the entry structure is type dependent. Examples of

entry types are table, column, index, form, report and linguistic item

types.

The KDD entry is expressed as an identifier plus any

combination of three distinct domains: description, syntax, semantic

domain. The description domain contains information to describe the

entry such as name, usage, location, content type and security mode. L-

Usage states the related entries, the reports use the item and so on.

Location states where the item is located in the information system.

The security states the users who are allowed to access the item

and the access type for each one. A example of an item description

domain is shown in Figure 4. The syntax and semantic domain describe

the syntax and the semantics of the item. These domains do not have

meaning for all the entry types 12, 3,4,5 ,8].

IDENTIFIER: salary
NAMING : wage
CONTENT: numeric
LOCATION: sa field
SECURITY: user I , rw

user2, rwm
COMMENT: the employee's weekly salary
RELATED: bonus, tax

Figure (4): The data item description domain

There may be more than one entry for the same item if it has

more than one meaning . An item may be an element or a group. A
data item is a group item if it consists ofmore than one elementary

item. A group definition shows the data elements that make up the

group and the relationship amons them. A set of relational operators

are used to define the composition of a group.

KnowlecZgenh fe Multiusnge Data Dictionary

Frames as a knowledge representation structure or tables can

be used to design the KDD, but the table is still preferred to keep

SQL interface since most of the attached information systems are

relational database systems. So, the tables discussed in the above

section can be extended to satisfy the new requirements by including

syntax and semantic information about the items.

CONCLUSION

This paper presents a complete design of a knowledgeable data

dictionary. It was implemented and introduced as either stand-alone

package or integrated into an information system. In this phase, it can

only be integrated with a relational database system, but it can be

extended to be compatible with other types of information systems.

The KDD is based on table as the only data structure, so it has the

same SQL interface with most of the relational database systems. A
menu-driven user interface is built for the dictionary allowing the user

to maintain, repair, and consult the dictionary data. The KDD

environment may be customized through E(DD profile feature.

REFERENCES

1. E.F. Codd. "Does Your DBMS Run by the Rules?,"

Computeworld, October 2 1, 1985.

2. A.L. Furtado and M.A. Casanova, "Updating Relational Views,"

Query Processing in Database Systems, New York,

Springer Verlag 1985.

3 . C.J.Date, ".An Introduction To Database Systems." Volume I, Fifth

Edition, Addison Wesley, 1990.

Hnny M. M. Hnrb

4. B. Gavish and H. Pirkul, "Cxiiputer and Database Location in

Distributed Cornpu:?: Systems," IEEE Trans. on

Computers, Volume C - l i , Number 7, July 1986.

5. H. R. Kanakia and F. A. Tckigi, "On Distributed Computations
Y

with Limited Resour:s." IEEE Trans. on Computers,

Volume C-36, Number 5. May 1987.

6. S.C. Kak, "Data Security ii: Computer Networks," Computer,

Volume 16, Number 3. Fzb. 1983.

7. R.G. Canning, "A New Viex ?<Data Dictionaries," EDP Analyzer,

Vol. 19, No. 7, July, 1SSl.

8. A. Barr, E. Afeigenbanx "The Handbook of Artificial

Intelligience, " Vol. 1, Vt3iam Kaufmann Inc., 198 1.

