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ABSTRACT

A run of experimental tests have been undertaken for investigated various
types of ring. Where the ring is splitt up into two pads, also, a ring is splitt up into
four pads respectively. The effect of using different pads is then evaluated and the
influence of different factors on performance is discussed under steady applied load
conditions, .

Performance factors are described in terms of, supply pressur, friction torgue
oil flow rate, inlet-ocutlel temperature and ring speed. Results are reached on the
relative credits of each control variable case. A reduction in friction torque ranges
between 25% and 30% ls obtained at speed of 1330 r.p.m. to 1700 r.p.m. and over
respectively. It is established that the number of pads is an important factor in reducing
friction torque of floatlng ring bearing. It was found experimentally that four pads
bearing reached a reduction of 25% in the friction torque at constant pressure, te mper-
ature, load and viscosity.

L.INTROQUCTION
The effect of Friction force has previously been shown to be an important
consideration in the operation of floating ring bearing. [1-13]. flcating cing journal

bearings find many application forms especially for high speed machines they have
tigh--damping properties due to the oil films of sleeve. The power loss is lower than
that of other types of journal bearings [8,11, 3],

When an additional ring is inserted between conventional journal and bearing
fixed housing, are produced two films, each having half relative velocity of the original
bearing. It was shown under this condition the total power consumed remains the same
if laminar conditions esxist in the original bearing, If turbulent conditions exist, the
total power is reduced pecause of the dependence of the effectve viscosity on Reynolds
number Re = pu h ;‘f? [12].
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Hori (13} found that floating ring bearing have superior stability characteristics
when compared with convential cylindrical journal bearing. The reducdon in friction
was found to be significantwhen the floating ring concept was applied to automotive
engine bearings.

M.0.A. Mokhtar [ 3lindicated that the ring journal bearing should work at journal
eccentricity well below 0.5, if ring / beacing metallic contact has to be avoided. Fleating
ring bearing exhibit lower frictonal loss, but this may be at the expense of load
capacity. 5, Nussderfer [14] observed that the floating sleeve operated over a wide
range of speeds for a given shaft speed: the exact speed of the element depend on
the ratio of clearances and the ratio of radii.

C.F.Kettleborough [15] showed that the failure of floating sleeve of a full
floatdng bearing to start always from rest, when under load, would be an important
consideration in the design of this.bearing. The main disadvantage of this type is its
failure to start always from rest when under load. Experimental results shows that
40%lower power loss than the a comparable tilting-pad bearing [16]. The tilting-pad
bearing is clearly superior with respect to stability characteristics.

0.Pincus [17] mentloned, the speed of the pads was about 30 to 40 percent

that of the shaft. Alse he- discovered expermently at loads over 155 Nfcm? 1y, pads

stuck to the outer shaft, at heavy loading the pads collided with each other indicating

variable pad velocity. After completion of the ultimate load-capacity test the pads
were found to be undamped but intensely polished.

The Fpurpose of the present investlgatlon is to_establish experimently the
peformance influence on the operation of hydrodynamic floating rting journal bearing

The condition of operatden are such that the bearing load is steady applied and there
is relative spead between floating ring {or pads) and caunterfaces.

KOMENELATURE .

a, Inlet pipe area, m2

a, Oudlet pipe area, mé

C Radial clearance, um

159 Discharge coefficient

F : Frictional force, N

g . Acceleration, m/s?

h Head on manometer, m

L Bearing length, m

M First speed of pads when they look stationary, mir !
n, Final speed of pads when thay look stationary, mis!
Mr Actual ring speed, miﬂ'dI

R Shaft speed, min-"

Flow rate, m3 /s.
Bcaring radius, m
Sliding relocity, m/s.
Load, N

= ©C S D
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7 : dynamic or absolute viscosity, N.S/m?
£ : Eccentricity ratio
P : Density, Kg/m’

K‘ J Prﬂ : Density of oil and fluid manomecter respectively, kg/m*
d? ¢ Attitude angle, deg.

2. EXPERIMENTAL WORK

2.1 Floating Ring .
The test ring is made from mild steel, having inside diaeter of 52.04 mm,

outside diameter,59.95 mm. and length, 32 mm. This gives a diametral clearance of
04 mm. between the bush (ring) and the shaft and s diamelral clearance of .05 mm

between the housing and the bush itself. The _ring inside diameter of 55.08 mm was
coated with a layer of white metal having 1.02 mm thickness. Amiddle circumferential

grooves {5 mm width x 1 mm depth) were cut at its inside-and outside diameters. see
fig. 1 part 2.

Three or four equispaced holes are drilled, that is to connect the circu mferential
internal groove to external groove and to permit the oil to flow from housing to shaft
through the floating ring.

2.1.1. Floating Pads
Two three and four pads were manufactuced from one complete ring {bush).

The bush was cut into, two, three and four identical parts resgectivel . The identcal

parts are welded again by lead to give a complete bush. Then two and four pads have

been manufactured with the same characteristics of the complete ring. Again, by melting
the lead weld, two or four identical pads were produced.

2.2 Journal Shaft

The journal shaft is made from mild steel, having cutside dlameter of 52 mm
and length, 520 mm. The shaft is produced by 3 series of manufacturing operation (turning,
grinding, Lapping) to a roughness of 5 micron.

2.3 Bearing Fixed Housing Bush

The housing bush is made from mild steel, having outside diameter of 9C mm,
inside diameter, 70 mm and length 57 mm. The lnside diameter surface was coated
with white metal to reach a final diameter of 60 mm. Two equi-spaced nipples of 5
mm diameter is mounted on the bush for inlet-outlet ofl.

2.4 Bearing Fixed Housing Bush Cap

Two caps are made from PRESPEX, having outside diameter of %0 mm, inside
diamcter, 5w3 rnrrll3 and 8§ mm width. The cast aregﬁ.xed on housing bush faces'by six
flt cerew. At the inside diameter surface, a central groove was opened and o-ring seal
was inserted into this groove, this is to prevent oil leakage-Also the caps have two
important functlons :-
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I - to stop pads axially moving, and
O - to facilate speed measurment of the ring or pads by stroboscope
2.5 Test Rig

A sectional view of test rig is shown in fig. 1 and comprises, loading, and
friction device system 3t A, oil fced device at 8. main shaft 1, fleating ring or pads
2, housingbush 3, housing bush cap &, nut 7, pulleys $ and 13, oil seal 10, key 8, V-belt
9, fit screw 6, ball bearing 11, Cover 12, oil is supplied to the test system from an
pump 0-10 N/Cm? theough filter and oil measurment system. The main shaft has variable
speed rotation, through, A.C. motor 15, variable speed gear box 14, two pulleys  and
y-belt

2.5.1 Loading Device

The leading device comprises levers, operating »ith a load ratio of 2.76 through
cord mounted on free pulley to permit freedem in circumferential direction for the

system of housing bush. A dead weight is mounted on the lever see Fig. 2. and Fig. 3

2.5.2 Test Rig Shaft Fixation

Two ball bearing 11 supporting the test rig shaft are fixed in ripid frame
to support a substantial load with neqligible defiection Fig.l. The test rig shaft surface
is nominally round and surface ground to a finish of 5 u m.C.L.A.

2.5.3 Frictdon Tourque Device

When the shaft vrotates, the fleating ring and the housing bush lever wil
rotate in the same direction, this is due to the oil frictlon force, to prevent this retation,
a dead weight is mounted to the lever at opposite direction of rotation see Fig. 2 at
A, hence, this dead weight will balancing with friction force, that is to adjust the lever
in horizontal plan. The arm is slotied Fig. 2, hence, known weight can be moved in
the slot to any required distance. This lever system is operating with variable load
rago.

2.6 Auxiliary Equipment

The main requirement was to supply clean oil to the bearing at different
speed. The ol supply system is shown schematcally in Fig. 1. From controlled temper-
ature oil tank, oil is supplied by oil gear-pump to the test rig through, oil filter, pressure
gauge, Flow meter and back to the oil tank. It supplies oil at a maximum pressure and
flow rate of 15 M/m? and 115 m’/min respectively. The filter unit ensures the scpply
of clean oil.
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2.7. Instzu m mentation

2.7.1 Load

Known dead weight parallel with lever load system is used to operate the
load system upto a maximum load of 200 M, Fig. 2 and Fig. 3 at A

2.7.2. Friction Force

Known dead weight parallel to the lever friction system is used Lo operate
the frictdon system up to a maximum friction force of 10 N, Fig. 2 and Fig. 3 at A
Due to oil friction force, the housing bush lever will rotate in direction of rotation.
known dead weight Is mounted at A, Fig- 2, to kalance this friction force.

2.7.3 Flow Rate

Qrifice meter technique is used where the head-loss or pressure drop measur-
ments are taken to enable measurment of wide range of flow rate. This was pre-calib-
rated by a direct-welghing the oil at certain time. In the main time the head loss of
3 manometer is measured at constant tempergture say 3°C or 50°C.

Practical consideration for obstruction is used by installition inlet pressure
tap at a distance of one pipe diameter upsiream. The outlet pressure tap is located
one-half diameter dowenstream of the orifice. The flow rate is given according to
Ref. (181

2.7.% Ring or Pads Speed

The edge of the cring {or pads) is marked by' two thick lines, red and white
stroboscope is routed to the ring or pads through prespex caps, then gives the speed
in r.p.m. where Nt = - n2! (n1 -nz).

2.7.5 Temperature

A thermocouples hot juncton are placed near centre of the oil inlet-outlet
pipes. The cold juaction of the thermocouples are connected to terminal of temperatures
recorders directly, by adjustdng the recorders at room temperature, the temperatures
of oil are then recorded.

2.8 Test Procedure

Eight control variable are used. Applied load, friction torque, shaft or ring
speed, supply pressure, flow rate, oil viscosity temperature, and number of pads. In
most Investigation the supply pressure, viscosity, temperature and single pad were held

constant while varying the load over a range of speed. At each speed, the load was
varied in increments over the entire range from zero to 200 N,
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The pressure variation in the bearing has not been measured. More control
variables were held constant while varying the others. Measuccments were normally
made after approximately five or ten minutes of operating al particular set of conditions.

3 RESULTS AND DISCUSSIORN

X1, Frdcton Torque

Some experiments were taken at constant supply pressure, 15 N/Cm? inlet
temperature of 33 C° or 50°, inwhich different factors were used as control variable.

Figs.t {a-c) shows the variation of friction torque versus speeds differences N -N
- » r - - 5 r
In r.p-m. at constant lead, and single ring, in which oil types were used control variable,

oil viscosities were varied in four types from 20 SAE to 50 SAE. At low speeds Mg

- N, from 600 r.p.m. at a load of 100N to 1600 r.p.m at a load of 200 N, less cont-
inous contact occurs between the ring and both of journal and bearing. The boundary
lubrication is said to exist, where friction torque increases. with speeds.

On the basis of avoiding maximum friction torque, it would undesirable to
operate a floating bearing with Ns -Nr from 1200 r.p.m for light loads, to 1600 r.p.m

for heavy loads.

The nature of the curves obtained indicates that equal friction terque could
be obtained at low, and high. speeds . The choice of both will be equally suitable, but
the latter would enable the increase of speed, which will be cerflected on production
rate, which is economicel. On the basis of optimum condition of work over ail oil types
and loads, it would desirable to operate a fleating bearing with Mg - N. from 1300
r.p.m and over for light loads, te 1700 r.p.m and over for heavy loads.

At high speeds, the reduction in friction tougue was found to be significant
when the floating ring bearing was applied in high spced machinery [7,8]. For all viscos-
ities and loads, reduction in friction torque of 25% to 30% arc recorded at high speeds
from 1500 to 1700 c.p.m. and over.

Inspection of Figs.5 (a-¢) indicate that the friction torque depends on loads
and speeds for constant t,emEerar,ure, 3Q°C, pressure, 15 N/Cm*, single ring and oil
viscosites, from 0.011 to 0.054 kp. Sec/m*, When N -t{. r.p.m there is areduction
in friction torque. To achieve reduction in fricdon torque, thin oil has to be wused
increasing the Joad cacrying capacity and viscosity causes a corresponding increase
in friction torgue.

The effect of splitting -up the ring intoe more than one pad on the fri~tional

torque is displayed in Fig. 6 (a-h). This is for constant, temperature, 30 °C, pressure,
15 N/Cm?, loads, 100 and 2G0 M, and viscosities from G.11 N, Sec/m*® to 0.54% N.Sec/m?®.
At constant load of 100M, the friction torque is scen to decrcase starting from speed
N5 -Nr 1300 r.p.m up to speed 2000 r.p.m . But at constant load of 200 N, the friction

tergue isagainseen Lo decrease starting from speed 1700 r.p.m up to 2500 c.p.m.
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To improve the floating bearing performance, the bush has to be divided
into two or four pads, that is to obtain a reduction of 20% in the friction forgue at
constant pressure, temperature, load and ol viscosity.

312 Flow Rate

A comparison based on a single pad and constant oil viscosity, inlet pressure,
inlet temperature, Figures, 7 f{a-d), indicate that there is a significant modification

in flow condition. The flow rate developed in the heavy load of 200 M, however is
shown to decrease when based on single pad. For a heavy lead, the general behaviour,

as the film thickness decreases, indicates that the supply area provides insufficient
flow to the bearing. When inlet supply increases from 15 Nfcm?® to 18 Nfem?. The
perfor mance is relatively unaffected by this increase.

The performance for two pads has been ¢rmpared under the same nominal

operating conditdons. Figs. § {a-d} a gain when load is’high at constant inlet
temperature, the reduction in flow rate shows certain performance benefits aver the
whole range of journal speed from 1200 to 2700 r.p.m.

33 Journal -~ Ring Speed

The variation in ring speed with journal is. shown in Figs. ¢ {a-b) at nominal
constant conditions. The ratdo Nr/Ws decreases from (.87 at light load, 100 N, to
0.27 at heavy load, 200 N.

Figs. 10 {a-f), show the effect of nominal conditions on speed ratio of floating
bearing. It indicates that, there is a little difference in speed catio.

24 Qutlet Temperature

The results of tests at nominal constant conditions for single and two pads
are plotted in terms of ouwtlet-temperature at agiven journal speed. As the journal
speed increases, outlet temperature increase and the ranking erder remains unchanged,
Figs. 11 {a-f),.If the load increases, outlet temperature increases. In laminar flow,
temperature rise is given by (6]

DT :"ZU1 f0.18

It can be seen that now AT, for constant viscosity, is depending on zliding

speed. Thus in this case of Floating bearing, AT is important even at very low values
of speeds.

Also the temperature rise { 2N T) depends on the work done, Where the work
done of the lubricant is the frictional force (F) multiplied by the velocity [9].
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it is seen now that T, for constant wviscosity and sliding speed, is depending

on load and bearing clearance, Hence, the floating bearing temperature risc has a greater
dependence on the lead, since it reduces the bearing clecarances. Therefore unavoided
variations in bearing clearance have a marked cffect on bearing temperature {1Gi

4. CONCLUSION

1-

\I-d

At constant Jight load of 100 N, the friction torque is seecn Lo decrease starting

from speed N . N r 1300 rp.av VP to speed 2000 r.p.m. Dut at constant load
of 200 N, the fricton torgue is again seen te decrcase starting from specd
N - NL1700 rop.om 2P to 2800 c.p.m,

For all viscosities and loéds, reduction in friction torque of 25% to 30% are
recorded at high speeds from 1330 to 1700, and over.

To improve floating bearing performance, the bush has to be divided into

two or four pads, that is to obtain a reduction of 25% in the friction torque
at constant pressure, temperature, load and oil viscosity.

The speed ratio Np /-Ng decrcases from Q.47 for light load to 0.27 for heavy
1oad.

The nature of friction torque curves obtained indicates that equal friction torque

could be obtained at low and high speeds. The choice of both will be equally
sultuble, but the latter would cnable the increase of speed, which will be reflected

on production rate, which is ecangmical.
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