Menoufiya University
Faculty of Engineering
Shebin EI-Kom
Second Semester Examination
Academic Year: 2013-2014

Year: Post Graduate
Department: Hydraulics
Subject: Non-Newtonian Fluids
Time Allowed: 3 hours
Date: 17.06.2014

Allowed Tables and Charts: None

(a) What are the main classifications of fluid behavior? Show different examples of NonNewtonian fluids and plot the main flow curves indicating the various types of timedependent fluids.
(10 Marks)
(b) Derive the velocity profile and the volume flow rate and walls shear stress of Bingham plastics-flow between two parallel plates for the following conditions:
(I) Fixed plates
(15 Marks)
(II) Moving the upper plate with velocity U_{w} and fixing the lower one
(15 Marks)
(c) For Bingham plastics flow in a circular pipe, derive the Buckingham's equation and how to reduce it to Newtonian fluids.
(10 Marks)
Ouestion (2)
(50 Marks)
(a) Develop expressions for the boundary layer thickness δ, the wall shear stress τ_{w}, the total frictional drag force $F_{d i}$ and the drag coefficient $C_{d f}$ for laminar boundary layer flow of power law fluids over a flat plate with zero pressure gradient flow, assuming the velocity profile in the boundary layer to be given by:

$$
\begin{equation*}
\frac{u}{U_{x}}=A+B\left(\frac{y}{\delta}\right)-C\left(\frac{y}{\delta}\right)^{z} \tag{25Marks}
\end{equation*}
$$

(b) Compare the previous results obtained in (a) if the velocity profile is expressed as:

$$
\frac{u}{U_{x}}=C \sin \left(D \frac{y}{\delta}\right)
$$

(25 Marks)
Best wishes
Assoc. Prof. Dr. Eng. Wageeh El-Askary

The following relations may be used:

x-Momentum:
$\rho\left[\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial z}+w \frac{\partial u}{\partial z}\right]=-\frac{\partial p}{\partial x}-\left(\frac{\partial \tau_{y x}}{\partial x}+\frac{\partial \tau_{\partial x}}{\partial y}+\frac{\partial \tau_{x}}{\partial z}\right)+\rho g_{x}$

z-Momentum (cylindrical coordinates)

$\rho\left[\frac{\partial v_{n}}{\partial t}+v_{r} \frac{\partial v_{n}}{\partial r}+\frac{v_{0}}{r} \frac{\partial v_{s}}{\partial \theta}+v_{z} \frac{\partial v_{r}}{\partial z}\right]=-\frac{\partial p}{\partial z}-\left(\frac{1}{r} \frac{\partial r r_{r v}}{\partial r}+\frac{1}{r} \frac{\partial r_{v_{s}}}{\partial \theta}+\frac{\partial r_{r}}{\partial z}\right)+\rho g z$

