Effect of Sodium Bicarbonate and Oils on Powdery Mildew of *Matricaria chamomilla*. Karima G. Helmy Department of Plant Pathology Department, Faculty of Agriculture, AinShames Univ.

ABSTRACT

The effect of Sodium bicarbonate and three oils namely; garlic, anise and mineral oil individually and combination of Sodium bicarbonate + mineral oil were tested for their effect on powdery mildew of *Matricaria chamomilla* under greenhouse and field conditions. Disease severity was significantly reduced by all treatments in both greenhouse and field. Flowers number in greenhouse under infection of powdery mildew disease was highly significant in treatment with NaHCO₃ + mineral oil followed by Garlic oil and NaHCO₃. Fresh weight of flowers was significantly higher in NaHCO₃+ mineral oil followed by Garlic oil (5.24 and 3.45 g) compared to control (1.7g) respectively. On the other hand, dry weight was increased significantly in treatment with NaHCO₃ followed by Garlic oil (0.81 and 0.54g) compared to control (0.21g) respectively. Effect of sodium bicarbonate and oils on flowers fresh and dry weight and plant height under natural infection of powdery mildew in the field, was significantly increased in treatment with NaHCO₃ + mineral oil followed by NaHCO₃ (663.13 and 451.13g) compared with control (220.77g); respectively. Dry weight of flowers after 2 weeks was highly significant in treatment with NaHCO₃ followed by Anise oil (120.67 and 94.33g) compared to control (41.67g); respectively. On the other hand, after 4 and 6 weeks treatment with NaHCO₃ + mineral oil was the best treatment in fresh and dry weight followed by Anise oil. **Keywords:** Powdery mildew – *Matricaria chamomilla* – Plant extract – oils- NaHCO₃

INTODUCTION

Chamomile 'Matricaria chamomilla L.' plant is one of the most important medicinal and aromatic plants worldwide and in Egypt (El- Morsy et al., 2013). Chamomile plant, belonging to family Asteraceae (Compositae), mainly cultivated for obtaining the dry fluorescence that containing essential oil which is used in several medicinal industries and preparations of cosmetics compounds (Reda et al., 1999). Powdery mildew disease is considered one of the most important diseases attacking chamomile plant in its different cultivated areas. This disease was detected in Egypt for the first time in 1970 (Hilal et al., 1998). Two powdery mildew genera have been reported to infect M. chamomilla (Braun, 1987). Podosphaera fusca, Sphaerotheca fusc and S. fuliginea has been recorded in Canada, Egypt, Germany, Switzerland, USSR (Farr and Rossman, 2009).

Chamomile powdery mildew frequently occurs in the open field, estimated percentages of infection reaching 20-80% (El- Morsy et al., 2013). In severe infection, diseased plant seems as covered with layer form talk powder and this causes great damage especially for flowers which the important part of the plant, so the disease has negative effect on the quantity and quality of inflorescences yield regarded to the major purpose of chamomile plantation, all the possible procedures should be considered to manage it. The use of fungicides against plant diseases causes several problems such as carcinogenicity, development of fungicidal resistance and phytotoxicity as well as adverse effects of human health and environmental balance. Thus, it is urgent to apply alternative safe efficient methods against plant diseases. Recently, plant extract, and vegetable oils, such as neem (Azadirachta indica) and garlic (Allium sativum) has been used on powdery mildew fungi (Singh et al., 1991; Daayf et al., 1995; Abd-El-Sayed, 2000 and Tohamy et al., 2002). Different attempts were carried out to control of powdery mildew disease by sodium bicarbonate (Lahoz et al, (2000) and Salamone et al, (2009)). Sodium bicarbonate and oil combination were effective in controlling powdery mildew disease (Horst *et al.*, 1992).

The objective of this study was investigating the efficacy of different oils and sodium bicarbonate in controlling powdery mildew disease of chamomile under greenhouse and field conditions.

MATERIALS AND METHODS

The tested treatments used in this study and its concentrations were listed in Table (1):

Garlic oil and Anise oil were obtained from El-Captain Company for Extracting Natural Plant oils Cairo, Egypt. Sodium bicarbonate (NaHCO₃) Manufactured by El Nasr Pharmaceutical chemicals Co. Abu Zaabal, Egypt

Garlic extraction:

Garlic (*Allium sativum*) bulb, 100 g of plant material were cut, placed in a blender insterilized distilled water at the ratio of 1:1 w/v and blended for 10 minutes. The plant material residues were filtered through cheesecloth. The filtrate was centrifuged (3000 rpm) for 10 min. and separated to obtain the extract (Abd-El-Sayed, 2000).

Table 1. Treatments and concentration of compounds under study.

Treatments	Concentrations
Garlic extract	20%
Garlic oil	8m/L
Anise oil	1m/L
Mineral oil	1m/L
NaHCO ₃	4gm/L
NaHCO ₃ + Mineral oil	4 gm/L + 1 ml/L

Greenhouse experiments:

Chamomile seedlings of two months old were transplanted in 30 cm pots, one seedling per pot and eight replicates for each treatment. After 50 days of transplant plants were sprayed with prepared concentrations of different compounds in advance to inoculation with the pathogen. Spraying was repeated three times with 15 days intervals. Randomized complete block design experiment was applied to all

Karima G. Helmy

treatments and statistical analysis for recorded data was done. Control treatment was sprayed with water only.

Artificial inoculation technique:

Chamomile plants were inoculated with the pathogen conidia. Inoculation was accomplished by shaking or gently brushing of infected samples with powdery mildew conidia over the healthy plants. Inoculated plants were kept under greenhouse conditions and were examined daily.

Field experiment:

After three weeks of transplant; all chamomile plants grown under open field conditions were triple sprayed by the six treatments. Treatments were repeated two times every two weeks. Control treatment was water sprayed only.

Yield parameters

Effect on plant growth:

Morphological parameters include; plant height (cm), flowers number, fresh and dry weight (g/plant) were recorded in both greenhouse and field experiments.

Disease severity assessment:

The percentage of disease severity was calculated 10 days after inoculation using the disease scale levels from 0 to 4 after Whitney *et al.*, (1983) as follow: **Where:**

0 =No mildew colonies observed.

1 = 1 to 25% of plant area covered with mildew.

2 = 26 to 50% of plant area covered with mildew.

3 = 51 to 75% of plant area covered with mildew.

4 = 76to 100% of plant area covered with mildew.

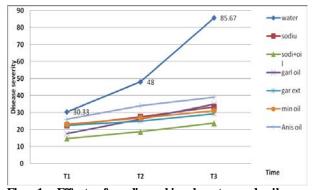
4 = 7000 100% of plain area covered with hindew

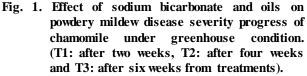
Disease severity (%) =

$\frac{\sum (rating no.) \times (no. leaves in rating category) \times (100)}{(Total no. leaves) \times (highest rating value)}$

The percentage of treatment efficiency in the reduction of powdery mildew severity was calculated using the following equation:

% Efficiency = <u>Control – Treatment</u> X 100 Control


Statistical analysis:


Data in this study were subjected to one way analysis of variance (ANOVA) followed by means separation through least significant difference (L.S.D.) test at P < 0.05 level (Snedecor and Cochran, 1980).

RESULTS

Greenhouse experiment:

Data presented in Fig (1) illustrated the effect of sodium bicarbonate (NaHCO₃) and oils on powdery mildew disease severity progress in greenhouse, where all treatments were significantly reduced disease severity progress through the time compared to control, the most effective treatment in reduction disease severity was NaHCO₃ + mineral oil combination followed by Garlic extract. On the other hand, data in Table (1) indicated that all treatments were higher significant, compared to control. Data showed that treatment with NaHCO₃ + mineral oil combination was more effective followed by Garlic extract and mineral oil (72.37, 65.76 and 63.8%) compared to control (0.00%); respectively.

Data presented in Table (3) showed that sodium bicarbonate and oils were effective on flowers number, fresh and dry weight in greenhouse under infection of powdery mildew disease. Flowers number showed significant increase in treatments with NaHCO₃ + mineral oil followed by Garlic oil and NaHCO₃ (11.15, 6.42 and 5.33) compared to control (2.80); respectively. Fresh weight of flowers was increased significantly when NaHCO₃ + mineral oil combination used (5.24g) followed by garlic oil (3.45 g) compared to control (1.7g); respectively. On the other hand, dry weight was increased significantly in treatment with NaHCO₃ followed by garlic oil (0.81 and 0.54g) compared to control (0.21g); respectively.

Table 2. Effect of sodium bicarbonate (NaHCO₃) and oils on powdery mildew disease severity of chamomile plants and efficiency under greenhouse condition

greemouse condition.				
Treatments	%Disease severity	%Efficiency		
NaHCO ₃	33.33 ^{cd} ±1.25	61.09		
NaHCO ₃ +Mineral oil	23.67 ^t ±0.94	72.37		
Garlic oil	$35.00^{\circ} \pm 1.41$	59.15		
Garlic extract	29.33 ^e ±0.47	65.76		
Mineral oil	$31.00^{de} \pm 1.63$	63.81		
Anise oil	$39.00^{b} \pm 0.82$	54.48		
Water	$85.67^{a} \pm 1.25$	0.00		
L.S.D.	2.51			

Data presented as the means of three replicates \pm SD. Different letters refer to significant difference (P \leq 0.05).

Table	3.	Effect	of	sodium	bicarbonate	(NaHO	CO3)	and
		oils	on	flower	s number,	fresh	and	dry
weight of chamomile plants in greenhouse								
		unde	r in	fection	of powdery	mildew	disea	se.

Treatments	Flowers				
i reauments	number/plantfresh weightDry weight				
NaHCO ₃	5.33 ^b ±0.42	$1.55^{\circ} \pm 0.24$	$0.45^{\circ} \pm 0.02$		
NaHCO3+Mineral oil	$11.15^{a}\pm0.82$	$5.24^{a} \pm 0.14$	$0.81^{a} \pm 0.03$		
Garlic oil	$6.42^{b} \pm 0.85$	$3.45^{b} \pm 0.05$	$0.54^{b} \pm 0.02$		
Garlic extract	$3.40^{\circ} \pm 0.74$	$1.46^{\circ} \pm 0.09$	$0.27^{d} \pm 0.01$		
Mineral oil	$3.68^{\circ} \pm 0.84$	$1.75^{\circ} \pm 0.15$	$0.26^{de} \pm 0.02$		
Anise oil	$3.42^{c} \pm 0.85$	$1.53^{\circ} \pm 0.29$	$0.27^{d} \pm 0.01$		
Water	$2.80^{\circ} \pm 0.47$	$1.7^{c} \pm 0.16$	$0.21^{e} \pm 0.01$		
L.S.D.	1.57	0.38	0.05		

Data presented as the means of three replicates \pm SD. Different letters refer to significant difference (P \leq 0.05).

Field experiment:

Data in Fig (2) illustrated the effect of sodium bicarbonate (NaHCO₃) and oils on powdery mildew disease severity progress in greenhouse. All treatments reduced disease severity progress significantly through the time compared to control, the most effective treatment in disease severity reduction was NaHCO₃ + mineral oil combination followed by anise oil then mineral oil. On the other hand, data found in Table (4) indicated that all treatments under the study had a significant efficiency in disease severity reduction compared to control. Data showed that NaHCO₃ + mineral oil treatment was more effective followed by garlic extract and garlic oil (72.00, 65.82 and 64.73%); respectively compared to control (0.00%).

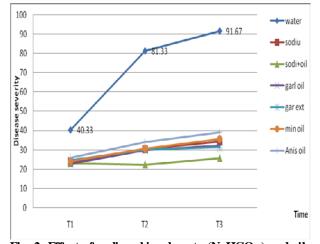


Fig. 2. Effect of sodium bicarbonate (NaHCO₃) and oils on powdery mildew disease severity progress of chamomile under natural infection in the field. (T1: after two weeks, T2: after four weeks and T3: after six weeks from treatments).

Table	4.	Effect of	sodium bicarbonate (NaHC			
		and oils	1	•		
		severity efficiency				
		field.				

Treatments	% Disease severity	% Efficiency
NaHCO ₃	$34.33^{\circ} \pm 2.05$	62.55
NaHCO ₃ + Mineral oil	$25.67^{d} \pm 2.87$	72.00
Garlic oil	$32.33^{\circ} \pm 2.05$	64.73
Garlic extract	31.33 ^{cd} ±2.05	65.82
Mineraloil	$35.67^{\circ} \pm 2.87$	61.09
Aniseoil	47.33 ^b ±2.62	48.37
Water	$91.67^{a} \pm 4.65$	0
L.S.D.	6.15	

Data presented as the means of three replicates \pm SD. Different letters refer to significant difference (P \leq 0.05).

Data presented in Table (5) demonstrated the effect of sodium bicarbonate (NaHCO₃) and oils on fresh and dry weight of flowers and plant height under natural infection of powdery mildew disease in the field. Fresh weight of flowers after 3 weeks was significantly increased in NaHCO₃ + mineral oil treatment followed by NaHCO₃ only (663.13 and 451.13g) compared with control (220.77g); respectively. Dry weight of flowers after 2 weeks was showed significant increase in NaHCO₃ + mineral oil treatment followed by anise oil (120.67 and 94.33g); respectively compared to control (41.67g). On the other hand, after 4 and 6 weeks plants treated with NaHCO₃ + mineral oil was the best treatment in fresh and dry weight followed by anise oil.

All treatments led to significant increase in plant height, treatment with NaHCO₃ + mineral oil gave higher significant increase (114.87 g) followed by NaHCO₃ (110.80g) compared to control (91.60); respectively.

 Table 5. Effect of sodium bicarbonate (NaHCO3) and oils on flowers fresh and dry weight and height of chamomile plants under natural infection of powdery mildew in the field.

	After two weeks After four weeks After six weeks						
Treatments	Flowers fresh	Flowers Dry	Flowers fresh	Flowers Dry	Flowers fresh	Flowers Dry	Plant height
	weight	weigh	weight	weigh	weight	weigh	
NaHCO ₃	451.13 ^b ±1.65	94.33 ^b ±0.94	$305.67^{d} \pm 4.19$	82.33 ^c ±2.05	$402.00^{\circ} \pm 2.16$	$101.67^{\circ} \pm 1.70$	110.80 ^b ±0.94
NaHCO ₃ + Min. oil	663.13 ^a ±1.44	$120.67^{a} \pm 0.94$	591.33 ^a ±2.62	$115.00^{a} \pm 1.63$	$673.00^{a}\ \pm 1.63$	$124.00^{a} \pm 2.45$	$114.87^{a} \pm 2.19$
Garlic oil	$245.23^{t} \pm 1.16$	54.33 ^d ±0.94	$234.33^{f} \pm 2.49$	$60.33^{t} \pm 1.25$	$305.00^{d} \pm 4.08$	$93.67^{d} \pm 1.25$	96.67 ^d ±1.42
Garlic extract	$381.73^{\circ} \pm 1.28$	$74.00^{\circ} \pm 1.41$	$319.67^{\circ} \pm 2.05$	75.33 ^d ±1.25	$249.33^{e} \pm 2.49$	$66.00^{\rm e} \pm 2.45$	92.70 ^e ±0.50
Mineral oil	254.40° ±1.68	$44.33^{t} \pm 0.94$	$268.33^{e} \pm 1.69$	$69.67^{e} \pm 1.25$	$230.00^{f}\ \pm 0.82$	$94.33^{d} \pm 1.70$	94.80 ^{de} ±1.55
Aniseoil	276.73 ^d ±1.36	51.33 ^e ±0.94	350.33 ^b ±2.05	90.00 ^b ±1.63	411.67 ^b ±1.70	110.33 ^b ±2.05	107.07 ^c ±2.15
Water	220.77 ^g ±1.30	$41.67^{t} \pm 2.36$	$222.33^{g}\ \pm 1.70$	$50.00^{\text{g}} \pm 0.82$	$210.67^{g}\ \pm 1.70$	$52.33^{\rm f} \pm 2.05$	91.60 ^e ±1.23
L.S.D.	3.04	2.81	3.26	3.13	4.91	4.27	3.29

Data presented as the means of three replicates \pm SD. Different letters refer to significant difference (P \leq 0.05).

DISCUSSION

In the present study disease severity was significantly reduced in all treatments in both greenhouse and field compared to control. Qvarnstrom (1992) stated that sprayed cucumber plants with 5% emulsion of garlic extract at 7 days intervals, reduce the infection with *E. cichoracearum*.

The results obtained in this study are in agreements with the findings of the following researchers who used similar compounds to control powdery mildew on other hosts.

Rovesti *et al.* (1992) found that, aqueous neem kernel extract was as effective as sulfur against powdery mildew of courgettes, wheat and barley. They found also that, neem extract gave significant control on

Puccinia recondita f.sp. *tritici*. Reimers *et al.* (1993) found that a compound derived from garlic (*Allium sativum*), protected some plants against powdery mildew disease.

Ahmed (1995) reported that garlic extract was more effective in inhibiting powdery mildew disease caused by *S. fuliginea*.

Nikolov and Andreev (1997) found that spraying rose plants with unrefined cotton-seed oil at rates of 0.5-2% reduced the powdery mildew disease incidence. Abd-El-Sayed (2000) demonstrated that the foliar application of some plant extracts (thyme, henna, eucalyptus and garlic) individually or mixed decreased powdery mildew on cucumber than control. Tohamy *et al.* (2002) reported that cucumber plants which sprayed with plant extracts of garlic and neem gave a significant reduction in powdery mildew disease incidence and severity.

Ohtsuka *et al.* (1991) observed that ultra structural alterations induced by spraying inoculated cucumber seedlings with machine oil suspension included deformation of the *Sphaerotheca fuliginea* hyphae, separation of the hyphal plasma membrane and degeneration of the cytoplasm, leading to death of the treated hyphae.

Collina (1996) evaluated the effect of mineral oil on powdery mildew disease of squash, and the results indicated that mineral oil was significantly reduced the disease. Steinhauer and Besser (1997) found that vegetable oils have significantly reduced the formation of powdery mildew pustules and their size on cucumber plants.

Yohalem (1997) stated that management of grey mould (*Botrytis cinerea*) and powdery mildews in tomatoes, cucumbers and potted roses can be achieved when applied rapeseed oil amended with either sodium bicarbonate or an emulsifier.

Wojdyla (2002) reported that Paraffin oil was better in the control of rose powdery mildew than the vegetable oils.

The inhibitory effect may be attributed to the formation of a physical barrier which prevent fungal penetration and reduced disease incidence also, it formed a continuous membrane which permits diffusion of oxygen and carbon dioxide and inhibits the passage of water and promotes a healthy physiological state of the plant this is agreement with the Opinion of Ziv, 1983 and Han, 1990.

Samane and Mohammad (2012) found that four oils i.e., anise, ammi, ziziphora and cinnamon inhibited the growth of *B. cinerea* and showed strong impact on post-harvest decay and fruit quality of peach.

It has been recently verified experimentally that sodium bicarbonate have antifungal activity (Lahoz *et al*, 2000), and showed a positive effect on rose plants against *S. pannosa* and black spot diseases (Horst *et al.*, 1992 and Salamone *et al.*, 2009),on powdery mildew of sweet red pepper (Fallik *et al*, 1997).

The findings were explained by previous authors who stated that oils have important ecological functions; the first one to protect the plant against pathogen infection (Taiz and Zeiger, 1991 and El-Kazzaz *et al.*, 2003), the other one that the essential oils contained specific components, antifungal compounds and fungi toxic agents that can inhibit the growth of many pathogens (Farag *et al.*, (1989), Zambonelli, (1996), El-Shoraky, (1998), Chao *et al.*, (2000), El-Shazly, (2000), Abd El-Kader *et al.*, 2003, Voda *et al.*, 2003, Moleyar and Narasimham, 2004, Sheng *et al.*, (2005) andKrishna Kishore and Pande, (2007)).

In the present study, all tested plant oils increased the fruit number/plant and fruit weight/plant this agreement with Ahmed, (2004)

COCLUSION

The treatment with NaHCO₃ and mineral oil combination was the most effective in reduction of powdery mildew disease severity in greenhouse and field, so it could be suggested that combined treatments between sodium bicarbonate and mineral oil be used for controlling powdery mildew disease of chamomile plants under field conditions.

REFERENCES

- Abd El-Kader, Dawlat, A.; A. A. Hilal; A.Z. Aly and M. G. A. Nada. (2003). Effect of essential oils and volatile substances of some medicinal and aromatic plants on squash powdery mildew disease. Proc 10th Congress of Phytpathology, Giza, Egypt. 179-192.
- Abdel-Sayed, M.H.F. (2000). Studies on powdery mildew disease of cucurbits under protected cultivation. M.Sc. Thesis, Plant Path. Dept., Fac. of Agric., Cairo Univ., Egypt.
- Ahmed G. A. (2004). Using Plant Extracts to Control powdery mildew disease that attack cucumber plants under protected houses. The Degree of Master of Science. Fac. Agric. Moshtohor, Zagazig Univ., Benha Branch.
- Ahmed, A.S.Y. (1995). Studies on the powdery mildew disease of cucurbits. M.S. thesis, Fac. of Agric., Al-Azhar Univ.
- Braun U, (1987). A Monograph of the Erysiphales (Powdery Mildews). Beihefte zur Nova Hedwigia 89, 1-700.
- Chao, C. S.; D. G. Young and C. J. Oberg. (2000). Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J. Essent. Oil Res., 12: 639-649.
- Collina, M. (1996): Natural products against powdery mildew. Colture-Protette, 25(9): 39-42.
- Daayf, F.; Schmitt, A. and Bélanger, R. R. (1995). The effects of plant extracts of Reynoutria sachalinensis on powdery mildew development and leaf physiology of long English cucumber. Plant Disease, 79(6):577-580.
- El- Morsy, S.A. and I. A. Shalaby, I.A. (2013). control of chamomile powdery mildew disease using potassien, citrien and chitosan. *J. Plant Prot.* and *Path.*, Mansoura Univ., 4 (11).

- El-Kazzaz, M.K.; E. M. El-Assiuty; M.M. Badr; H. M. El-Zahaby and M.I. Gouda. (2003). Effect of some plant extracts and essential oils on controlling sugar beet root rot disease caused by Sclerotium rolfsiiSacc. Proc 10thCongress of Phytopathology, Giza, Egypt: 237-248.
- El-Shazly, A. M. A. (2000). Antifungal activity of some essential oils on fungi causing damping-off diseases of maize. Al-Azhar J. Agric. Res., 31(6):95-107.
- El-Shoraky, Fathia, S. A. (1998). Using extracts and oils of some plants in controlling plant diseases. Ph. D. Thesis, Fac. of Agric. Kafr El-Sheikh, Tanta Univ., 187 pp.
- Fallik E., Ziv O., Grinberg S., Alkalai S. and Klein, J.D. (1997). Bicarbonate solutions control powdery mildew (Leveillula taurica) on sweet red pepper and reduce the development of postharvest fruit rotting. Phytoparasitica, 25, 41-43.
- Farag, R.S; Z.Y.Daw; F.M. Hewedi and G.S.A. El-Baroty. (1989). Antimicrobial activity of some spice essential oils. J. Protec., 52(9): 665-667.
- Farr DF, Rossman AY,(2009). Fungal Databases, Systematic Mycology & Microbiology Laboratory, ARS, USDA. 30, from http://nt.ars grin.gov/ fungaldatabases/.
- Han, J.S. (1990): Use of antitranspirnt epidermal coatings for plant protection in China. Plant Dis., 74: 263-266.
- Hilal, A.A.; I.M. Harridy ; A.M.Abo EL- Ela ; M.A.M. Baiuomy and EL-Morsy, S.A. (1998). Studies on the commonly and newly occurring disease of seven medicinal and aromatic plants and yield losses in relation to some agricultural practices in Egypt. Egyptian J. Appl. Sci., 13 (7): 41-60
- Horst R. K., Kawamo S.O. and Porter L.L. (1992). Effect of sodium bicarbonate and oils on the control of powdery mildew and black spot of roses. Plant Disease 3, 247 251.
- Krishna Kishore, G. and S. Pande. (2007). Evaluation of essential oils and their components for broadspectrum antifungal activity and control of late leafspot and crown rot diseases in peanut. J. Amer. Soc. Phytopath., 91(4): 375-379.
- Lahoze E, OlivaA, Postillo R, Nicolettir(2000). Efficacia di un estrattodi ruta, del bicarbonate di sodio e di fungicide adose ridota control,oidio del ta – bacco. Giornate fitopathologiche Proceedings 2, 293-299.
- Moleyar, V. and P. Narasimham. (2004). Antifungal activity of some essential oil components. Food Microbiol., 10:331-336.
- Nikolov, A. and Andreev, R. (1997). Studies on the efficiency of unrefined cotton-seed oil to powdery mildew pathogen in ornamental roses grown under greenhouse conditions. Bulgarian Journal of Agricultural Science, 3 (1): 33-37.
- Ohtsuka, N.; Nakazawa, Y. and Horino, O. (1991). The influence of machine oil on morphology of cucumber powdery mildew fungus (II). Electron microscopic observations on hyphae and haustoria of

Sphaerotheca fuliginea. Annals of the Phytopathological Society of Japan, 57 (5): 711-715.

- Qvarnstrom, K. (1992). Treatment of powdery mildew (Erysiphe cichoracearum) on cucumber plants with low toxic measures. Vaxtskyddsnotiser, 56 (1): 17-20.
- Reda, Fatma; Tarraf, Shahira; E.A. Abdel-Rahim; A.S. Afify and Ayads, Hasnaa, S. (1999). Effect of low temperature on growth, some biochemical constituents and essential oil of chamomile. Annals Agric. Sci., Ain Shams Univ., Cairo, 44 (2): 741 – 760.
- Reimers, F.; S.E. Smolka; S. Werres; S.K. Plank and Wagner, G. (1993). Effect of ajoene, a compound derived from Allium sativum, on phytopathogenic and epiphytic microorganisms. Zeitschrift fur Pflanzenkrankheiten and Pflanzenschutz, 100 (6): 622-633.
- Rovesti, L.; Marco, S.D. and Pancaldi, D. (1992): Effect of neem kernel extract on some phytopathogenic fungi under greenhouse conditions. zeitschrift fur Pflanzenkrankheiten and Pflanzenschutz, 99 (3): 293 -296 (c.f. Rev. Pl. Pathol., 71(12) 907, 1992).
- Salamone A., Scarito. G, Scovazzo, G.C. and Fascella G. (2009). Control of powdery mildew in Cut roses usingnatural products in the Greenhouse. Floriculture andOrnamental Biotechnology, (7):121-125.
- Samane, M. and M.H. Aminifard (2012). Effect of Essential Oils on Postharvest Decay and Some Quality Factors of Peach (Prunus persica var. Redhaven). J. Biol. Environ. Sci, 6(17): 147-153.
- Sheng,Y. W.; F. C. Pin and T. C. Shang. (2005). Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamonum osmophloeum) leaves against wood decay fungi. Bioresouce Technology, 96: 813-818.
- Singh, U.P.; Srivastava, B.P.; Singh, K.P. and Mishra, G.D. (1991). Control of powdery mildew of pea by ginger extract. Indian Phytopathology, 44 (1): 55-59.
- Snedecor, G. M. and W. G. Cochran (1980). Statistical methods, Sixth Edition, Iowa State Univ. Press, Amer. Iowa, USA.
- Steinhauer, B. and Besser, K. (1997). Curative effect of vegetable oil and sodium bicarbonate on Sphaerotheca fuliginea on cucumber. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent, 62(3b): 1035-1040.
- Taiz, I. and E. Zeiger. (1991). Surface protection and secondary defense compounds. In: Taiz, I. and E. Zeiger (eds.). Plant Physiol., 318-345, Benjamin/ Cummings, California.
- Tanda S,(1998). Powdery mildews occurring on some herbal or medicinal plants and their causal fungi. Journal of Agricultural Science, Tokyo University of Agriculture 43, 159-167.

- Tohamy M.R.A.; Aly, Z.A., Abd-El Moity, T.H., Atia, M.M. and Maisa L. Abed- EL-Moneim (2002). Evaluation of some plante extracts in control of damping-off and mildew diseases of Cucumber. Egypt J Phytopathogen;30(2): 71-80.
- Voda, K.; B. Boh; M. Vrtacnik and F. Pohleven. (2003). Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the whiterot Trametes versicolorand the brown-rot Coniophora puteana.Inter. Biodeterioration and Biodegradation, 51: 51-59.
- Whitney,E,D; R.T. Lewellen and Skoyen, I.O. (1983). Reaction of sugar beet to powdery mildew: genetic variation, association among testing procedure and resistance breeding. Phytopathol., 73: 182-185
- Wojdyla, A.T. (2002). Oils activity in the control of rose powdery mildew. 54th International Symposium on Crop Protection, Part I, Gent, 7 May, 2002. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent., 67 (2): 369-376.
- Yohalem, D. (1997). Prospects for the biological control of foliar plant diseases in Danish greenhouses. SP Rapport Statens Planteavlsforsog, 8:199-206.
- Zambonelli, A.; A. Bianchi and A. Elbasini. (1996). Effect of essential oils on phytopathogenic fungi in vitro. Phytpathology, 86: 491-494.
- Ziv, O. (1983). Control of powdery mildew of roses with antitreatment coating polymers. Hassadeh, 53: 1967-1969.

تأثير بيكربونات الصوديوم والزيوت على البياض الدقيقى على البابونج. كريمة جابر حلمى قسم أمراض النبات ـكلية الزراعة جامعة عين شمس.

تم دراسة تأثير بيكربونات الصوديوم والزيوت على البياض الدقيقي فى البابونج تحت ظروف الصوبة والحقل، وجد ان المعاملات ادت الى خفض شدة الاصابة بشكل كبير في كل المعاملات في كلا من الصوبة والحقل، تم تقدير عدد الاز هار، الوزن الرطب والجاف في الصوبة تحت ظروف العدوى الصناعية لمرض البياض الدقيقي، كان عدد الاز هار كبير بدرجة معنوية وخاصة فى المعاملة بالزيوت المعدنية + NaHCO3 يليه زيت الثوم و NaHCO3، تم زيادة الوزن الجاف بشكل ملحوظ في المعاملة بـ الزيوت المعدنية + NaHCO3 يليه زيت الثوم و NaHCO3، تم زيادة الوزن الحاف بشكل ملحوظ في المعاملة بـ الزيوت المعدنية المقارنة بالكنترول المعامل بالماء فقط تم در اسة تأثير بيكربونات الصوديوم والزيوت على الوزن الرطب والوزن الجاف للاز هار وعلى ارتفاع النبات وذلك تحت ظروف العدوى الطبيعية من البياض الدقيقي في الحقل، وزادت بشكل ملحوظ هذه القياسات الماخوذة فى المعامل بالماء المعدني سواء في المعدى المياني والزيوت على الوزن الرطب والوزن الجاف للاز هار وعلى ارتفاع النبات وذلك تحت ظروف العدوى الطبيعية من البياض الدقيقي في الحقل، وزادت بشكل ملحوظ هذه القياسات الماخوذة فى المعاملة بكل من المعدني سواء في الوزن الرطب والزيوت على الوزن الرطب والوزن الجاف للاز هار وعلى ارتفاع النبات وذلك تحت ظروف العدوى الطبيعية من البياض الدقيقي في الحقل، وزادت بشكل ملحوظ هذه القياسات الماخوذة فى المعاملة بكل من المعدني سواء في الوزن الرطب والرابي اليه زيت اليون أوزاد الماليات الماخوذة في المعاملة بكل من المعدني ألايت المعدني تليها والجاف يليه زيت الينسون.