PERFORMANCE OF PROMISING HYBRID RICE GENOTYPES UNDER DIFFERENT IRRIGATION INTERVALS

E. E. Gewaily, H. Sh. Hamad, B. B. Mikhael and E. F. Arafat Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Egypt.

Received: Jan.	17,	2021	Accepted: Jan.	26,	2021
	,	-		- ,	-

ABSTRACT: Water shortage stress is the most critical abiotic factor reducing rice yield. Water deficit stress at whichever of the rice critical growth stage causes decline in yield. A field experiment was conducted at the Experimental Farm of Sakha Agricultural Research Station, Kafrelsheikh, Egypt during 2018 and 2019 seasons, to investigate the effect of four irrigation intervals (continuous flooding(I1), irrigation every six days(I2), nine days(I3) and twelve days(I4)) on performance of five genotypes (Giza 178, IR 69625A/Giza 178, IR 70368A/Giza 178, IR 69625A/Giza 179 and IR 69625A/Giza 181). Strip plot design, with four replications was used. The horizontal plots were assigned to irrigation treatments, while the vertical plots were assigned to rice genotypes. Different drought tolerance indices such as abiotic tolerance index (ATI), stress susceptibility index (SSI), mean productivity (MP), tolerance index (TOL) and stress susceptibility percentage index (SSPI) were tested in screening superior rice genotypes. The results showed that days to 50% heading, plant height, panicle length, panicle weight, number of effective tillers hill⁻¹, spikelet's number panicle⁻¹, number of branches panicle⁻¹, seed set (%), 1000-grain weight (g), number of filled grains panical⁻¹, grain yield t ha⁻¹, harvest index (%) and biomass weight t ha⁻¹ were highly significantly affected by the interaction between irrigation intervals and genotypes. The highest values of grain yield were obtained by IR69625A/Giza 181 under continuous flooding irrigation during both seasons. Based on results of different drought tolerance indices, IR69625A/Giza 181 showed lowest values of ATI, SSI and TOL and the highest values of MP and SSPI and was identified as drought tolerant genotype.

Key words: Rice genotypes, irrigation intervals, drought tolerance indices and grain yield.

INTRODUCTION

Rice (Oryza sativa L.) is one of the foremost staple food crops for nearly sixty five percentage of the world's population. Therefore, sustainable rice production is necessary to overcome food scarcity throughout the globe. However, rice is considered one of the most drought-sensitive plants due to its small root system, thin cuticular wax, and swift stomatal closure (Ji et al., 2012). Water shortage is the prime environmental which constrictions, happen in many parts of the world annually, habitually having destructive effects on crops productivity. Thus, drought mitigation, through development of drought-tolerant varieties with higher suitable water-limiting vields for environments, will be the key factor to improve stable rice production (Kumar et al., 2016). Water deficiency is one of the most limiting factors in more than 30% of paddy fields in Egypt, consequently improving varieties tolerating water shortage is one of the most important objectives in rice breeding programs (Abd Allah, 2010). Stomata closing, leaf area reduction, thicker cuticles, roots enlargement, maintaining photosynthetic rates at high levels, producing or rising the rate of some proteins, regulating the

osmotic conditions, accumulation of organic acids, changes in carbohydrate metabolism and dropping the rate of respiration are the typical biochemical and physiological drought tolerance mechanisms in rice plant (Ji et al., 2012 and Sahebi et al., 2018). Choice the right and proper genotypes on the basis of relative yield performance has been considered a reliable method for evaluating a large number of genotypes in water deficits stressed conditions (Panthuwan et al., 2002). Kumar et al., (2016) stated that the traits include plant height, days to flowering, delay in flowering, grain vield panicle⁻¹, biomass/biological yield, harvest index, number of panicles plant⁻¹, panicle length, panicle excretion, spikelet fertility, total number of spikelets, panicle length, 1000-grain weight and seed setting. They are all affected by different intensities of drought stress under field conditions.

Numerous selection indices founded on a mathematical relative between grain yield under water deficits stressed and non-stressed conditions have been proposed. The capability of improved genotypes to perform reasonably well in drought stressed environments is vital for stability or increase the production. The combination of high yield stability and high relative grain yield under waters stress has been proposed as helpful selection criteria for characterizing genotypic performance under varying degrees of water shortage stress (Gaballah, 2018 and Adhikari et al., 2019). The improvement of drought tolerance genotypes with а optimum vield prospective is one of the major aims of drought tolerance rice breeding for enhancing rice production in Egypt. On the other hand, with the end of the twenty-first century, the drop of water resources as a result of anthropogenic and natural factors will lessen the intense consumer of water (Joshi et al., 2016).

There are various indices to ascertain drought tolerance such as stress tolerance level (TOL), stress tolerance index (STI), stress susceptibility index (SSI) and stress susceptibility percentage index (SSPI), which may be helpful as an indicator for identifying drought tolerant genotypes that do well in stressful environments. These indices are yield stability parameters which are based on the amount of reduction are achieved of under stress water deficiencv condition (Kumar et al., 2014 and Adhikari et al., 2019). Raman et al., (2012) stated that rice genotypes which achieved minimal yield reduction had the lowest SSI and TOL values. Various researchers stated that the varieties which had the minimum SSI values were drought tolerant than the varieties which had the maximum SSI values. Application indices of drought tolerance in the select of drought tolerant genotypes have been statement in several crops (Sio-Se Mardeh et al., 2006 and Kumar et al., 2014).

The purpose of present study was to identify promising hybrid rice genotypes having optimum yield potential and stability under water deficit stress conditions and recognize the most suitable drought yield indices to understanding of yield changes by water stress and irrigated conditions.

MATERIALS AND METHODS

A field experiment was conducted during the two consecutive rice growing 2018 seasons and 2019 at the **Experimental Farm of Sakha Agricultural** Research Station, Kafrelsheikh, Egypt. The experiment was conducted to assess the performance of four promising hybrid rice genotypes beside Giza 178 rice (as inbred cultivar) under different irrigation intervals. The previous crop was barely (Hordeum Vulgare L.) in the two seasons. The soil of the investigational site is clayey in texture. The initial soil chemical properties (soil analysis according Cottenie et al., 1982) at 0 to 20 cm soil depth of the investigational site as an average of both seasons were: pH 8.2, organic matter (OM) 1.5%, total nitrogen 685 mg kg⁻¹, available P 11 mg kg⁻¹, available K 370 mg kg⁻¹, available Zn 0.73mg kg⁻¹, available Fe 5.45 mg kg⁻¹ and 2.95 mg available Mn kg⁻¹. The experimental design was strip plot with four replications. The horizontal plots were assigned to four irrigation treatments namely, continuous flooding (I1), irrigation every six (I2), nine (I3) and twelve days (I4), while the vertical plots were assigned to different genotypes i.e., Giza 178 as inbred rice cultivar and four promising hybrid genotypes IR 69625A/Giza 178, IR 70368A/Giza 178, IR 69625A/Giza 179 and IR 69625A/Giza 181.

Seeds at the level of 24 kg ha⁻¹ for promising hybrid genotypes and at the level of 144 kg ha⁻¹ for Giza 178 were soaked in water for 24 hr, and then incubated for 48 hr to accelerate early germination. Pre-germinated seeds were uniformly broadcasted in the nursery on 8th and 5th May of the two seasons, respectively. The permanent field was well prepared, *i.e.* plowed twice followed by well dry leveled. Basal application of phosphorus and potassium fertilizers was applied to all plots and incorporated well into the soil during land preparation at the rate of 36 kg P₂O₅ and 60 kg K₂O per hectare using single super phosphate fertilizer and potassium sulfate. respectively. Nitrogen fertilizer was applied at the rate of 165 kg N ha⁻¹ in the form of urea (46.5% N). Urea was added in three equal splits, as basal application, and top dressed at 35 and 70 days after transplanting. All other agronomic practices were done as recommended. Seedlings were carefully uprooted from the nursery at 30 days after sowing and distributed in the plots. Seedlings were manually transplanted in 20x20 cm space between rows and hills, with 1 seedling hill⁻¹. Number of days to 50% heading was recorded for each genotypes. At harvest, the plant height (cm) and number of effective tillers hill⁻¹ were estimated. Ten panicles were collected randomly to estimate the panicle length (cm), panicle weight (g), number of branches panicle⁻¹, number of filled grains panicle⁻¹, and 1000-grain weight (g). The crop of central 5 m² of each plot was harvested separately at full maturity, dried, threshed, then grain and straw yields were recorded and each of them was converted into t ha⁻¹. The grain yield was modified at 14% moisture content.

Drought tolerance evaluations were estimated as follow:

1-Abiotic tolerance index (ATI) according to Moosavi *et al.*, (2008).

$$ATI = [(Y_p - Y_s)/(\overline{Y}_p/\overline{Y}_s)]^* [\sqrt{Y_p * Y_s}]$$

2-Stress susceptibility index (SSI) assesses the reduction in yield caused by unfavorable (stress) compared to favorable irrigated environments (Raman *et al.*, 2012).

$$SSI = \frac{1 - (\frac{Y_s}{Y_p})}{1 - (\frac{\overline{Y_s}}{\overline{Y_s}})}$$

- 3- Mean productivity (MP) the differences in yield between the stress and nonstress environments (Hossain *et al.*, 1990 and Kumar *et al.*, 2014). MP = $(Y_P + Y_S)/2$
- 4- Tolerance index (TOL) the difference in yield and the average yield between stress and non-stress environments (Rosielle and Hambling, 1981).

TOL= Y_P-Y_S

5- Stress susceptibility percentage index (SSPI) (Moosavi *et al.*, 2008).

$$SSPI = \left[\frac{Y_p - Y_s}{2(\overline{Y}_p)}\right] * 100$$

Where:

- Y_P = the potential grain yield under continues flooding
- Y_s = the grain yield under irrigation treatment
- Y_P = Mean grain yield under continues flooding
- Y_s = Mean grain yield under stress continue

E. E. Gewaily, et al.,

Data were statistically analyzed according to Gomez and Gomez (1984). The mean differences were compared by the Duncan's Multiple Range Test (Duncan, 1955) using a statistical computer package CoStat. Correlation analysis was computed by following the standard statistical procedure by Steel *et al.*, (1997).

RESULTS AND DISCUSSION

Results in Table (1) showed that days to heading 50 %, as well as plant height and number of effective tillers hill⁻¹ at harvest were significantly affected by irrigation intervals. The number of days to 50% heading significantly increased by increasing irrigation intervals. The differences in heading dates could be attributed to the extended vegetative stage due to water stress. Lafitte et al., (2004) and Mohamed et al., (2019) stated that water deficit stress results in delay heading, this is mainly due to a reduction in plant dry matter production and slowed elongation of the panicle and supporting tissues and therefore delay panicle exsertion. Plant height and number of effective tillers hill-1 were decreased as intervals period increased up to 12 days, in both seasons. The reduction in plant height could be attributed to reduction in cell turger that causes reduction in cell enlargement, which decreases shoots in turn enlargement. Ahmed *et al.*, (2017) reported that water stress situation has a high influence on plant growth and results in the reduction of plant height. Water stress reduces the cell size and cell division, which may affect the plant under drought condition. height However, the reduction in number of effective tillers hill⁻¹ could be attributed to less ability of tiller nodes to produce more tillers under water stress. A similar trend was found by Sarvestani et al., (2008), El-Refaee et al., (2012) and Gewaily et al., (2019).

Treatment	Days to 50	% heading	Plant he	ight (cm)		f effective s hill ⁻¹
	2018	2019	2018	2019	2018	2019
Irrigation interval (I)						
11	93.66d	94.18d	89.70a	90.67a	25.60a	25.87a
12	95.37c	95.47c	87.60b	88.47b	24.27a	24.33b
13	96.53bc	96.65b	84.58c	86.40c	22.73b	22.80c
14	97.92a	97.86a	82.25c	83.18d	20.00c	20.80d
F test	*	*	**	**	**	**
Genotype (G)						
Giza 178	93.24de	93.24d	87.07bc	88.59b	21.08c	21.50c
IR 69625A/Giza 178	95.33c	95.92c	85.58c	89.92a	23.17ab	22.58bc
IR 70368A/Giza 178	96.83bc	97.42bc	83.94d	84.08cd	24.08a	24.17a
IR 69625A/Giza 179	92.32e	91.57e	81.51e	82.91d	22.84b	23.67ab
IR 69625A/Giza 181	101.64a	102.08a	92.07a	90.40a	24.59a	25.34a
F test	**	**	**	**	*	*
I x G	**	**	**	**	**	**

Table 1. Effect of irrigation intervals on plant characteristics of different genotypes during 2018 and 2019 seasons.

 I_1 = Continuous flooding, I_2 = irrigation every 6 days, I_3 = irrigation every 9 days and I_4 = irrigation every 12 days

* = Significant at 0.05 level, ** = Significant at 0.01 level and NS= Not significant

Means in the same column designated by the same letter are not significantly different at 5% level

Rice genotypes varied significantly in number of days to 50% heading, plant height and number of effective tillers hill⁻¹. The hybrid of IR 69625A/Giza 179 was earlier in heading time than other genotypes while, hybrid of IR 69625A/Giza 181 was later in heading and produced the tallest plants and the highest number of effective tillers hill⁻¹ in both seasons.

Table (2) exhibited that the highest period needed to 50% heading was obtained by IR 69625A/Giza 181when irrigated every12-day. While IR 69625A/Giza 179 under continuous irrigated recorded the lowest period needed to 50% heading in both seasons. These findings are in close agreement with those reported by Gaballah (2009). Heading delay is a common drought response observed in rice (EL-Refaee et al. (2005), which is expected to confer a benefit in those environments where water deficit stress is impermanent, if development and flowering resume after the stress is relieved. The delays in heading and maturity might be considered as good indicators in drought screening tests because the effect of drought on the trait was consistent (Mohamed et al., 2019). IR 69625A/Giza 181 with continue irrigated produced the tallest plants and the highest number of effective tillers hill⁻¹. While IR 69625A/Giza 179 gave the shortest plants and the lowest number of effective tillers hill⁻¹ when irrigated every12-day.

Table 2. Days to 50 % heading, plant height and number of effective tillers hill ⁻¹ as affect
by the interaction between genotypes and irrigation intervals during 2018 and
2019 seasons.

		201	18			201	9			
Genotype	I 1	12	13	14	I 1	12	13	14		
			Da	ays to 50	% heading					
Giza 178	89.29e	93.67d	94.33d	95.67c	90.66f	92.33ef	94.60d	95.35d		
IR 69625A/Giza 178	93.33d	94.30d	96.00c	97.67cd	94.00de	95.00d	96.67cd	98.00bc		
IR 70368A/Giza 178	95.00cd	96.33c	97.66c	98.33c	96.00cd	97.33cd	97.67cd	98.67bc		
IR 69625A/Giza 179	90.67e	91.29e	92.67d	94.64d	89.59f	91.35ef	91.67ef	93.66d		
IR 69625A/Giza 181	100.00bc	101.27ab	102.00ab	103.27a	100.67abc	101.33a	102.66a	103.64a		
			Plant heig	ht (cm)						
Giza 178	90.67b	88.66b	85.33c	83.61cd	91.00b	90.67b	89.00bc	83.67d		
IR 69625A/Giza 178	90.33b	86.31bc	83.01cd	82.68cd	93.67a	90.00b	89.00bc	87.00c		
IR 70368A/Giza 178	87.83b	86.00bc	82.59cd	79.32d	85.00cd	84.00d	82.00de	80.64ef		
IR 69625A/Giza 179	83.67c	82.67cd	81.65cd	78.05d	89.00b	85.33cd	83.00de	79.00f		
IR 69625A/Giza 181 96.00a 94.38a 90.30b 87.58b 94.67a 92.33a 89.00b 85.59c										
		Number	of effectiv	e tillers h	ill ⁻¹			1		
Giza 178	23.00c	22.33d	21.00de	18.00f	23.33cd	22.00de	21.67e	19.00ef		
IR 69625A/Giza 178	25.67b	24.33bc	22.66d	20.00e	25.00bc	24.00c	21.33e	20.00ef		
IR 70368A/Giza 178	26.00a	25.33b	24.00bc	21.00de	26.67a	25.00bc	23.67c	21.33e		
IR 69625A/Giza 179	25.67b	23.67bc	22.00d	20.00e	26.00b	24.67bc	23.00c	21.00e		
IR 69625A/Giza 181	27.67a	25.67a	24.00b	21.00de	28.35a	26.00b	24.33c	22.67de		

 I_1 = Continuous flooding, I_2 = irrigation every 6 days, I_3 = irrigation every 9 days and I_4 = irrigation every 12 days

Means in the same column designated by the same letter are not significantly different at 5% level

Results in Table (3) indicated that yield attributes i.e., panicle length, panicle weight, number of branches panicle ⁻¹, number of spikelets panicle ⁻¹, number of filled grains panicle ⁻¹, seed set (%) and 1000-grain weight were significantly affected irrigation by intervals. They were reduced as off period increased up to 12-days, in both seasons. The highest values of all traits were obtained with continuous flooding followed by irrigation every 6-day. These results are in agreement with those stated by Gewaily et al., (2019) who stated that such increment in yield attributes under non stress condition could be due to that reality available water enhanced the biological and physiological process which increase the production and translocation of the dry matter content from source to sink which resulting in more panicles, grain filling and weight. These results are in harmony with those stated by El-Refaee et al., (2005) and Zubaer et al. (2007).

Results in Table (3) revealed that a significant difference was obtained among tested genotypes in respect of yield attributes traits i.e., panicle length, panicle weight, number of branches panicle ⁻¹, number of spikelets panicle ⁻¹, number of filled grains panicle ⁻¹, seed set (%) and 1000-grain weight in both seasons. Also, the results showed that IR 69625A/Giza 181 produced the highest values of panicle length, panicle weight, number of branches panicle ⁻¹, number of spikelets panicle⁻¹, number of filled grains panicle⁻¹, compared to the other rice genotypes in both seasons. On the other hand, Giza 178 produced the lowest values of panicle length, panicle weight, number of branches panicle ⁻¹, number of spikelets panicle ⁻¹, number of filled grains panicle⁻¹ and 1000-grain weight. Most variation among the rice genotypes in yield attributes traits might be due to the genetic background differences.

Interaction between irrigation intervals and rice genotypes significantly affected the panicle length, panicle weight, number of spikelets panicle ⁻¹, number of filled grains panicle⁻¹, seed set (%) and 1000-grain in both seasons. Results in Table (4) indicated that the tested hybrid rice genotypes produced the highest values under contiuous flooding treatment, while the lowest values were recorded with irrigation every 12-day. These results are in harmony with those stated by Zaman et al. (2018) who reported that drought stress caused several constructional and functional disruptions in reproductive organs. leading to malfunction of fertilization or premature abortion of the seed. Early senescence, shortens the grain fillness period, photosynthesis reduction and enhanced soluble sugars remobilization from grains to other vegetative parts are observed when water stress happens at the reproductive stage. The sugars or carbohydrate remobilizations strongly depend on source activity and sink strength which vary with genotypes.

Results in Table (5) revealed that prolonging irrigation intervals caused a reduction in the grain yield. Continuous flooding recorded the highest biomass and grain yield followed by irrigation every 6-day. The reduction in biomass yield as affected by prolonging the irrigation intervals may be due to the decrease in dry matter production, plant height and number of effective tillers hill⁻¹. However, the reduction in grain yield as affected by prolonging the irrigation intervals may be attributed to the reduction in dry matter production, panicle weight, number of panicles hill⁻¹, number of filled grains panicle⁻¹ and 1000-grain weight. A similar trend was found by El-Refaee et al. (2012) and Gewaily et al. (2019), who found that continuous flooding gave the highest grain yield. Also, the irrigation every

Treatment	Panicle (ci	Panicle length (cm)	Panicle v (g)	Panicle weight (g)	Number of branches panicle -1	ber of ches cle ₁	Spikelets number panicle-	elets panicle ⁻¹	Number of filled grains panicle ⁻¹	of filled anicle-1	Seeds	Seed set (%)	1000-grain weight (g)	grain nt (g)
	2018	2019	2018	2019	2018	2019	2018	2019	2018	2019	2018	2019	2018	2019
Irrigation Interval (<u>1)</u> 11	22.25a	22.47a	3.26a	3.32a	9.40a	9.33a	139.2 7 a	139.42a	139.27a 139.42a 126.80a 128.02a	128.02a	91.02a	91.75a	25.51a	25.95a
: 2	21.57a	21.57b	3.03a	3.08a	9.20a	9.27a	129.53b	132.00b	129.53b 132.00b 120.13b	121.80b	92.85a	92.34a	24.34a	24.66a
<u>1</u>	20.83b	20.81b	2.84b	2.49b	9.13a	9.00a	116.07c	120.21c	120.21c 104.40c	107.54c	90.09	89.57b	22.87b	23.26b
14	19.48b	19.95b	2.53c	2.61b	8.46ab	8.20b	108.67d 110.07d	110.07d	96.93d	99.39d	89.51c	90.63b	21.54c	22.20b
F test	×	*	*	*	*	*	**	**	**	**	*	*	**	**
Genotype (G)														
Giza 178	19.63 c	19.78b	2.30d	2.33c	8.58ab	8.33b	110.25d 112.09c 104.33c 104.68c	112.09c	104.33c	104.68c	94.68a	93.61a	20.63d	21.13c
IR 69625A/Giza 178 21.38ab	21.38ab	21.40a	3.06b	3.01b	8.67ab	8.67ab	117.00c 123.26b 108.08bc 113.24b	123.26b	108.08bc	113.24b	92.45b	91.96b	23.34bc	23.78b
IR 70368A/Giza 178	20.91b	21.15a	3.06b	3.00b	9.17a	9.00ab	126.75b	128.93b	126.75b 128.93b 112.17b 111.01bc	111.01bc	88.46d	86.14c	22.91c	23.78b
IR 69625A/Giza 179	21.23b	21.66a	2.83c	3.07b	9.17a	9.33a	126.75b	128.17b	126.75b 128.17b 110.83b 117.52b	117.52b	87.36d	91.48b	25.83a	26.09a
IR 69625A/Giza 181	22.02a	22.03a	3.33a	3.40a	9.17a	9.41a	136.17a	134.68a 124.92a		124.50a	91.39c	92.18b	23.11bc	25.34a
F test	*	*	**	**	*	*	% :K	**	**	**	*	**	**	*
I x G	**	**	**	**	NS	NS	**	**	**	**	**	**	**	**
I_1 = Continuous flooding, I_2 = irrigation every 6 days, I_3 = irrigation every 9 days a * = Significant at 0.01 level and NS= Not significant	ng, l ₂ = irr level, ** =	igation ev = Significa	/ery 6 day ant at 0.0'	/s, l₃= irriç 1 level an	gation eve d NS= No	ery 9 day: t significa	6 days, I_3 = irrigation every 9 days and I_4 = irrigation every 12 days at 0.01 level and NS= Not significant	rrigation	every 12 (days				

Means in the same column designated by the same letter are not significantly different at 5% level

2019 seasons and 201R Iring Ŧ 5 2 diffo ť ę nanicle 5 20 interv of irrigation Effect Table 3.

Performance of promising hybrid rice genotypes under different irrigation

		20	2018			20	2019	
Genotype	11	12	13	14	11	12	13	14
				Panicle le	Panicle length (cm)			
Giza 178	20.67c	20.33c	19.50cd	18.00e	21.00c	20.33cd	18.92ef	18.85f
IR 69625A/Giza 178	22.33b	21.67b	22.17b	19.33cd	22.83a	21.27c	21.17c	20.31d
IR 70368A/Giza 178	22.33b	21.83b	20.33c	19.16d	22.65ab	21.60bc	20.85c	19.50e
IR 69625A/Giza 179	22.43b	21.50b	20.83c	20.17c	22.68a	22.50ab	21.36bc	20.10d
IR 69625A/Giza 181	23.50a	22.50b	21.33c	20.73c	23.17a	22.17b	21.77ab	21.00c
			Panicle	Panicle weight (g)				
Giza 178	2.48c	2.36cd	2.31cd	2.03d	2.45c	2.40c	2.37c	2.09cd
IR 69625A/Giza 178	3.41a	3.27b	2.98b	2.59c	3.49a	3.22a	2.86b	2.45c
IR 70368A/Giza 178	3.47a	3.03b	2.92b	2.82bc	3.38a	3.07b	2.86b	2.7b
IR 69625A/Giza 179	3.21b	2.98b	2.82bc	2.31cd	3.43a	3.12b	2.93b	2.81b
R 69625A/Giza 181	3.73a	3.52a	3.16b	2.89b	3.85a	3.58a	3.16b	3.00b
			Spikelets nu	number panicle ⁻¹				
Giza 178	120.67c	114.67c	111.00d	94.67e	125.67c	116.67d	110.68d	95.33e
IR 69625A/Giza 178	136.67b	120.33c	108.33de	102.67e	139.36b	131.00b	119.00cd	103.66de
IR 70368A/Giza 178	145.00ab	139.00b	115.33d	107.67d	141.69a	138.00b	118.36cd	117.67d
IR 69625A/Giza 179	139.67b	127.00bc	120.67c	119.67c	140.00a	130.00b	124.66c	118.00d
IR 69625A/Giza 181	154.33a	146.67a	125.00c	118.67a	150.36a	144.35a	128.33c	115.67d
			Number of filled	d grains panicle	-			
Giza 178	111.67d	110.33d	105.33e	90.00f	113.69c	109.00d	103.68	92.33f
IR 69625A/Giza 178	123.33c	114.00d	100.67e	94.33f	126.00b	122.35c	107.62de	97.00ef
IR 70368A/Giza 178	129.67b	122.33c	101.33e	95.33f	123.36c	115.67d	105.00de	100.00ef
IR 69625A/Giza 179	123.33c	114.67d	105.33e	100.00ef	133.38b	125.00bc	108.69de	103.00e
IR 69625A/Giza 181	146.00a	139.33a	109.33de	105.00e	143.67a	137.00ab	112.69d	104.64de
			Seed	Seed set (%)				
Giza 178	92.54a	96.22a	94.89a	95.07a	90.47b	93.43a	93.68a	96.85a
IR 69625A/Giza 178	90.24bc	94.74a	92.93a	91.88b	90.41b	93.40a	90.44b	93.58a
IR 70368A/Giza 178	89.43bc	88.00c	87.86c	88.54b	87.06b	83.82c	88.71b	84.98c
IR 69625A/Giza 179	88.30bc	90.29bc	87.29c	83.56d	95.27a	96.15a	87.19b	87.29b
IR 69625A/Giza 181	94.60a	95.00a	87.46c	88.48b	95.55a	94.91a	87.81b	90.46b
			1000-grai	1000-grain weight (g)				
Giza 178	22.16c	21.00c	19.86d	19.50d	23.00c	22.50cd	20.00de	19.00e
IR 69625A/Giza 178	26.53a	24.83b	21.96c	20.03cd	26.76a	24.35b	23.00c	21.00de
IR 70368A/Giza 178	24.93b	23.83b	22.86b	20.02cd	25.67b	24.44b	23.32bc	21.67cd
IR 69625A/Giza 179	27.86a	26.83a	24.70b	23.93b	28.00a	26.67a	25.00b	24.68b
10 000060/01-101	26 07a	25.20a	24.96b	24.20b	26.32a	25.36b	25.00b	24.67b

Treatment	Biomass y	vield (t ha ¹)	Grain yiel	d (t ha¹)	HI	(%)
Treatment	2018	2019	2018	2019	2018	2019
Irrigation Interval (I)						
11	25.37a	25.98a	11.25a	11.19a	44.84a	44.74a
12	23.42b	23.39b	10.59b	10.62b	44.71a	44.11a
13	20.95c	20.92c	9.46c	9.34c	43.52b	43.74b
14	19.22d	19.13d	8.64d	8.47d	44.34ab	43.54b
F test	*	*	**	**	*	*
Genotype (G)						
Giza 178	18.84d	18.72d	8.86d	8.84d	46.86a	47.01a
IR 69625A/Giza 178	23.08b	23.13b	10.39ab	10.10b	43.20c	42.84c
IR 70368A/Giza 178	23.28b	23.05b	10.36b	10.30b	43.82b	44.06b
IR 69625A/Giza 179	20.94c	21.17c	9.45c	9.43c	44.74b	44.09b
IR 69625A/Giza 181	25.06a	25.71a	10.90a	10.87a	43.16c	42.17d
F test	**	**	**	**	*	**
l x G	**	**	**	**	NS	NS

Table 5. Effect of irrigation intervals on biomass yield (t ha¹), grain yield (t ha¹) and harvest index (%) of different genotypes during 2018 and 2019 seasons.

 I_1 = Continuous flooding, I_2 = irrigation every 6 days, I_3 = irrigation every 9 days and I_4 = irrigation every 12 days

* = Significant at 0.05 level, ** = Significant at 0.01 level and NS= Not significant

Means in the same column designated by the same letter are not significantly different at 5% level

6-day was statistically placed in the same level with flooded method. This might be due to better growth characters (dry matter, chlorophyll content and plant height) associated with higher mobility and absorption of mineral nutrients in soil solution, which enhanced the uptake of nutrients and contributed to favorable growth attributes consequently, resulted in production higher yield.

Results in Table (5) also, showed that the differences in genotypes were highly significant for biomass yield and grain yield in both seasons. The hybrid 69625A/Giza 181 gave the highest values of biomass weight and grain yield while, the lowest values of grain yield and biomass weight were obtained with the genotype of Giza 178. On the other hand, the genotype Giza 178 gave the highest values of harvest index. While, the hybrid 69625A/Giza 181 gave the lowest values of harvest index in 2018 and 2019 seasons.

The results in Table (6) indicated that the interaction between genotypes and irrigation intervals was significantly affected biomass yield and grain yield in both seasons. The combination between IR 69625A/Giza 181 with continuous flooding produced the highest values of grain yield and biomass weight. While, the lowest values of biomass weight and grain yield were obtained with Giza 178 when irrigated every 12-day in 2018 and seasons. The results 2019 are inconformity with that stated by Kondhia et al., (2015).

Drought yield indices:

The data in Table (7) showed that the drought yield indices abiotic tolerance index (ATI), stress susceptibility index (SSI) and tolerance index (TOL) gave the same trend approximately for different genotypes where, the drought

E. E. Gewaily, et al.,

susceptible genotypes were resulted the highest values of ATI, SSI and TOL in contrast to this, the drought tolerance genotypes were recorded the lowest values of ATI, SSI and TOL. A similar trend was found by Singh et al., (2018) and Adhikari el al., (2019) who reported that TOL and SSI are useful parameters for identifying genotypes that perform well in stress situation and the genotypes with low values can be considered as drought tolerant. On the other hand, the drought yield indices mean productivity (MP) and stress susceptibility percentage index (SSPI) gave the same trend for all genotypes therefore, the drought susceptible genotypes recorded the lowest values of MP and SSPI as well as the drought tolerance genotypes were recorded the highest values of MP and SSPI. The results were observed is agreement with Kumar et al., (2014) and Kondhia et al., (2015).

Results in Table (7) showed that genotype of IR 69625A/Giza 181 under different irrigation intervals had the lowest values of ATI, SSI and TOL. While, genotype of IR 69625A/Giza 178 gave the highest values of ATI, SSI and TOL under different irrigation intervals. On the other hand, the highest values of MP and SSPI attained from the IR 69625A/Giza 181. With respect to MP the genotype of Giza 178 gave the lowest values while, the lowest values of SSPI were obtained with IR 69625A/Giza 178 under different irrigation intervals. According the results IR 69625A/Giza 181 was more tolerant to drought stress because it had the lowest values of ATI, SSI and TOL and the highest values of MP and SSPI (Table 7). The results are in harmony with Singh et al., (2018) and Adhikari el al., (2019) who reported that TOL index was effective in improving yield of genotypes under condition of water shortage stress and the chosen genotypes performed poorly under non-stressed condition. Gaballah, (2018) reported that use of SSI in blend with yield value under water deficiency stress condition for discovering drought tolerant/sensitive genotypes.

		20	018			20	019	
Genotype	l1	12	13	14	l1	12	13	14
				Biomass y	vield (t ha ¹)		
Giza 178	21.50d	19.94e	17.76f	16.15g	21.04e	20.02e	17.26f	16.55g
IR 69625A/Giza 178	27.43b	23.56cd	21.64de	19.68e	27.60b	22.94d	21.37e	20.59e
IR 70368A/Giza 178	25.32bc	24.55c	22.60d	20.63e	25.75bc	24.63cd	22.30de	19.50f
IR 69625A/Giza 179	22.79d	22.00d	20.28e	18.70f	23.92cd	22.18de	20.29e	18.29f
IR 69625A/Giza 181	29.79a	27.07b	22.46d	20.93e	31.61a	27.17b	23.37c	20.70e
				Grain yie	ld (t ha ⁻¹)			
Giza 178	10.27c	9.73d	8.56e	6.89f	10.22bc	9.69c	8.44	7.00f
IR 69625A/Giza 178	11.74a	11.12b	9.86e	8.75e	11.58a	10.97b	9.50c	8.34d
IR 70368A/Giza 178	11.71a	10.95c	9.72e	9.05e	11.51a	10.88b	9.61c	9.19cd
IR 69625A/Giza 179	10.73c	9.93d	8.67e	8.48e	10.65b	10.07c	9.04d	7.95ed
IR 69625A/Giza 181	11.81a	11.21b	10.62d	10.02d	12.00a	11.94a	10.12c	9.86c

Table 6. Effect of interaction between genotypes and irrigation intervals on biomass (t ha⁻¹) and grain yield (t ha⁻¹) during 2018 and 2019 seasons.

 I_1 = Continuous flooding, I_2 = irrigation every 6 days, I_3 = irrigation every 9 days and I_4 = irrigation every 12 days

Means in the same column designated by the same letter are not significantly different at 5% level

yield indices i interval 6									20	2018									
9	АΠ				SSI	10			МР	۵.			ToL	Ļ			ŝ	SSPI	
	6	12	mean	9	6	12	mean	9	6	12	mean	9	6	12	mean	9	6	12	Mean
Giza 178 5.08 13	13.52 26.75	6.75	15.12	0.89	1.06	5.58	2.51	10.00	9.42	8.58	9.33	0.54	1.71	3.38	1.88	-2.40	-7.60	-15.02	-8.34
IR 69625A/Giza 178 7.44 17.74 29.27	7.74 2		18.15	0.99	1.05	4.39	2.14	11.47 10.84 10.28 10.86	10.84	10.28	10.86	0.69	1.95	3.06	1.90	-3.07	-8.67	-13.60	-8.45
IR 70368A/Giza 178 8.10 17	17.90 25.77	5.77	17.26	1.10	1.08	3.85	2.01	11.33 10.72 10.38 10.81	10.72	10.38	10.81	0.76	1.99	2.66	1.80	-3.38		-8.84 -11.82	-8.01
IR 69625A/Giza 179 7.77 16	16.75 20.20		14.91	1.26	1.22	3.55	2.01	10.33	9.70	9.61	9.88	0.80	2.06	2.25	1.70	-3.55	-9.15	-10.00	-7.57
IR 69625A/Giza 181 5.72 10	10.54 17.55		11.27	0.77	0.61	2.48	1.29	11.48 11.18 10.88 11.18	11.18	10.88	11.18	0.53	1.12	1.72	1.12	-2.36	-4.98	-7.64	-4.99
mean 6.82 15	15.29 2	23.91	15.34	1.00	1.00	3.97	1.99	10.92 10.37	10.37	9.95	10.41	0.66	1.77	2.61	1.68	-2.95	-7.85	-11.62	-7.47
									20	2019									
Drought yield indices	АТІ				SSI	10			MP	۵.			TOL	Ļ			ŝ	SSPI	
Irrigation interval 6	6	12	mean	ø	n	12	mean	g	n	12	mean	ø	6	12	mean	ø	n	12	Mean
Giza 178 5.05 13	13.80 20.61		13.15	1.20	1.05	1.29	1.18	9.96	9.33	8.61	9.30	0.53	1.78	3.22	1.84	-2.37	-7.95	-14.39	-8.24
IR 69625A/Giza 178 6.58 18.21 24.09	8.21 2		16.29	1.22	1.09	1.15	1.15	11.28 10.54	10.54	9.96	10.59	0.61	2.08	3.24	1.98	-2.73		-9.29 -14.47	-8.83
IR 70368A/Giza 178 6.75 16	16.68 18.05		13.83	1.27	1.00	0.83	1.03	11.20	10.56	10.35	11.20 10.56 10.35 10.70	0.63	1.90	2.32	1.62	-2.81	-8.49	-10.36	-7.22
IR 69625A/Giza 179 5.75 13	13.19 18.80		12.58	1.26	0.91	1.04	1.07	10.36	9.85	9.30	9.84	0.58	1.61	2.70	1.63	-2.59	-7.19	-12.06	-7.28
IR 69625A/Giza 181 4.69 13	13.29 17.61	-	11.86	0.12	0.95	0.73	0.60	11.97 11.06 10.93 11.32	11.06	10.93	11.32	0.06	1.88	2.14	1.36	-0.27	-8.4	-9.56	-6.08
Mean 5.76 15	15.03 19.83		13.54	1.01	1.00	1.01	1.01	10.95 10.27	10.27	9.83	10.35	0.48	1.85	2.72	1.69	-2.15		-8.26 -12.17	-7.53

Correlation among grain yield and drought tolerance indices

Correlation coefficients were used to find the best criterion for choosing drought tolerant genotypes. According to literature (Kumar et al., 2014 and Gaballah, 2018), the appropriate index must to have a significant relationship with yield in both stressed (irrigation every 12 days) and non-stressed (continuous flooding) conditions. As shown in Table (8) the potential grain yield (Y_P) under continuous flooding was highly significant and positive correlated with grain yield under stress (Y_{12}) conditions. Also Y_P and Y_{12} were also highly significantly and positively associated with drought indices MP and SSPI and they were closely related together. Otherwise, the highly significant and negative correlation was found among ATI, SSI and TOL with grain vield under both conditions. On the other hand, MP and SSPI were significantly and negatively correlated with ATI, SSI and TOL. In addition positive correlation was observed among ATI, SSI and TOL. Similar results were stated by Gaballah and AbdAllah (2015) and Mau et al., (2019) who reported that drought indices having a significant correlation with grain vield in both non-stressed and stressed conditions are reported to be suitable for selecting drought tolerant genotypes.

	Yp	Y ₁₂	ATI	SSI	MP	TOL	SSPI
Үр	1						
Y12	0.90**	1					
ATI	-0.12	-0.51**	1				
SSI	-0.69**	-0.92**	0.78**	1			
MP	0.96**	0.99**	-0.37*	-0.85**	1		
TOL	-0.52**	-0.84**	0.87**	0.96**	-0.73**	1	
SSPI	0.52**	0.84**	-0.87**	-0.96**	0.73**	-1.00**	1

 Y_p = the potential grain yield under continues flooding Y_{12} = the grain yield under irrigation every 12 days

ATI = abiotic tolerance index, SSI = stress susceptibility index, MP = mean productivity, TOL = tolerance index stress and SSPI =susceptibility percentage index

CONCLUSION

Egypt suffers from a shortage of available water, so rice researchers are striving to develop varied genotypes that are tolerant to the long irrigation period. The investigation was conducted to performance of assess the some promising hybrid rice genotypes under different irrigation intervals and recognize the most suitable drought yield indices. According the results assessed from various parameters of drought tolerance indices, it revealed that, promising hybrid rice of IR 69625A/Giza 181 gave the highest grain yield under different irrigation intervals and has

lowest values of ATI, SSI and TOL and the highest values of MP and SSPI thus it was the most tolerant for stress of prolong irrigation period.

REFERENCE

- Abd Allah A. A. (2010). Development of some high yielding rice lines tolerant to drought stress conditions. J. Medicinal Plants Research. 4(7): 528-535.
- Adhikari, M., N. Adhikari, S. Sharma, J. Gairhe, R. Bhandari and S. Paudel (2019). Evaluation of drought tolerant rice cultivars using drought tolerant indices under water stress and

irrigated condition. American J. of Climate Change. 8(2): 228-236.

- Ahmed, M., Md. Ehsanul Haq, Md. Monir Hossain, Md. Shefat-al-Maruf and M. M. Hasan (2017). Performance of four different rice cultivars under drought Stress in the North-Western Part of Bangladesh. International J. Agric. and Forestry. 7(6): 134-139.
- Cottenie, A., P. M. Verloo, L. Kiekens, G. Velghe and R. Camerlynek (1982). Chemical Analysis of Plants and Soils. Lab. Anal. Agrochem. State Univ., Gent. Belgium.
- Duncan, D. B. (1955). Multiple range and multiple F test. Biometrics, 11: 1- 42.
- El-Refaee I. S., A. E. Abd-El-Wahab and S. A. Ghanem (2005). Physiological performance and yield of some rice cultivars as affected by different irrigation intervals. Egypt J. Agric. Res., 83(58): 393-410.
- El-Refaee, I. S., R. N. Gorgy and T. F. Metwally (2012). Response of some rice cultivars to plant spacing for improving grain yield and productivity under different irrigation intervals. Alex. J. Agric. Res., 57(1): 1-15.
- Gaballah, M. M. and A. A. AbdAllah (2015). Effect of water irrigation shortage on some quantitative characters at different rice development growth stages. World Rural Observations. 7(2):10-21.
- Gaballah, M.M. (2009). Studies on physiological and morphological traits associated with drought resistance in rice (*Oryza sativa* L.). PhD thesis. Kafrelsheikh University.
- Gaballah, M. M. (2018). Agronomical traits and drought tolerance indices for some rice genotypes under drought stress and non-stress conditions. Proceeding of The 7th Field Crops Research Institute Conference 18-19 Dec. 149-164.

- Gewaily, E. E., Amera T. Mohammed and W. T. Abd El-Rahem (2019). Effect of different irrigation regimes on productivity and cooking quality of some rice varieties. W JA S 15 (5): 341-354.
- Gomez, K. A. and A. A. Gomez (1984). Statistical Procedures for Agricultural Research.2nd Edition, John Wiley and Sons, New York.
- Hossain, A. B. S., R. G. Sears, T. S. Cox and G. M. Paulsen (1990). Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Sci., 30:622-627.
- Ji, K., Y. Wang and W. Sun (2012). Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J. Plant Physiology. 169(4): 336–344.
- Joshi, R., S. H. Wani, B. Singh, A. Bohra, Z. A. Dar, A. A. Lone, A. Pareek and S. L. Singla-Pareek (2016). Transcription factors and plants response to drought stress: current understanding and future directions, Front. Plant. Sci. 7, 1029,1-15.
- Kondhia, A., R. E. Tabien and A. Ibrahim (2015). Evaluation and selection of high biomass rice (*Oryza sativa L.*) for drought tolerance. Amer. J. of Plant Sci., 6: 1962-1972.
- Kumar A., S. Basu, V. Ramegowda and A. Pereira (2016). Achieving sustainable cultivation of rice. Mechanisms of drought tolerance in rice. Burleigh Dodds Science Publishing Limited, (1) :1-34.
- Kumar S., S. K. Dwivedi, S. S. Singh, S. K. Jha, S. Lekshmy, R. Elancheian, O. N. Singh and B. P. Bhatt (2014). Identification of drought tolerant rice genotypes by analysing drought tolerance indices and morphophysiological traits. SABRAO J.

Breeding and Genetics. 46 (2): 217-230.

- Lafitte H. R., A. Ismail and J. Bennett (2004). Abiotic stress tolerance in rice for Asia: progress and the future. In Proceeding of 4th International Crop Science Congress, Brisbane, Australia. 26: 1137.
- Mau, Y. S., Ndiwa, A. S. S., Oematan, S. S. and J. E. R. Markus (2019). Drought tolerance indices for selection of drought tolerant, high yielding upland rice genotypes. Australian J. Crop Science 13 (1): 170-178.
- Mohamed A., S. Sedeek, A. Galal and M. Alsakka (2019). Effect of water deficiency as abiotic stress on the reproductive and ripening stage of rice genotypes. Int. J. Plant Sci. Agric. 2(1):13-19.
- Moosavi S. S., B. Y. Samadi, M. R. Naghavi, A. A. Zali, H. Dashti and A. Pourshahbazi (2008). Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert 12: 165-178.
- Panthuwan, G., S. Fokai, M. Cooper, S. Rajatasereekul and J. C. Toole (2002). Yield response of rice genotypes to different types of drought under rainfed lowlands. Part 1: grain yield and yield components. Field Crop Res. 41: 45-54.
- Raman, A., S. Verulkar, N. P. Mandal, M. Varrier, V. D. Shukla, J. L. Dwivedi, B. N. Singh, O. N. Singh, P. Swain, A. K. Mall, S. Robin, R. Chandrababu, A. Jain, T. R. Ram, S. Hittalmani, S. Haefele and A. Kumar (2012). Drought yield index to select high yielding rice lines under different drought stress severities. 5lfh:5(31): 1-12.
- Rosielle, A. A. and J. Hamblin (1981). Theoretical aspects of selection for yield in stress and non-stress environment. Crop Sci. 21: 943-946.

- Sahebi, M., M. M. Hanafi, M. Y. Rafii, T. M. Mahmud, P. Azizi, M. Osman, R. Abiri, S. Taheri. Ν. Kalhori. М N. Shabanimofrad, G. Miah, and Atabaki (2018). Improvement of drought tolerance in rice (Oryza sativa L.): genetics, genomic tools, and the WRKY gene family. BioMed Research International. 1-20.
- Sarvestani, Z. T., H. Pirdashti, S. A. M. M. Sanavy, and H. Balouchi (2008). Study of water stress effects in different growth stages on yield and yield components of different rice (*Oryza sativa* L.) cultivars, Pak. J. Biol. Sci. PJBS, 11(10): 1303–1309.
- Singh, S. P., A. Kumar, A. Satyendra, M. Kumar, S. Nahakpam, S. Sinha, H. Smrity, P. Sundaram, S. Kumar and P. K. Singh (2018). Identification of drought tolerant rice (*Oryza sativa* L.) genotypes using drought tolerance Indices under Normal and Water Stress Condition. International Journal of Current Microbiology and Applied Sciences. 7: 4757-4766.
- Sio-Se Mardeh, A., A. Ahmadi, K. Poustini and V. Mohammadi (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crop Res. 98: 222-229.
- Steel, R. G. D., J. H. Torrie and D. A. Dickey (1997). Principles and procedures of statistics. A biochemical approach, 3rd ed. McGraw Hill Book Co. Inc., New York, USA.
- Zaman, N. K., M. Y. Bdullah and S. Othman (2018). Growth and physiological performance of aerobic and lowland rice as affected by water stress at selected growth stages. Rice Science, 25 (2): 82-93.
- Zubaer, M. A., A. K. B. Chowdhury, M. Z. Islam, T. Ahmed and M. A. Hasan (2007). Effects of water stress on growth and yield attributes of Aman rice genotypes. Int. J. Sustain. Crop Prod. 2(6): 25-30.

أداء بعض هجن الأرز المبشرة تحت فترات ري مختلفة

السيد السيد جويلي، حسن شحاتة حمد، بطرس بشرى مخائيل، السيد فاروق عرفات قسم بحوث الأرز – معهد بحوث المحاصيل الحقلية – مركز البحوث الزراعية – مصر

الملخص العربى

يعد الإجهاد الناجم عن نقص المياه من أهم العوامل البيئية التى تتسبب فى انخفاض إنتاجية الأرز حيث يسبب نقص المياه عند أي مرحلة من مراحل النمو الحرجة للأرز في انخفاض المحصول. ولذلك أجريت تجربه حقلية بمزرعة محطة البحوث الزراعية بسخا – كفر الشيخ – مصر خلال موسمى ٢٠١٨ و ٢٠١٩ بهدف دراسة تأثير فترات رى مختلفة (الرى المستمر و الرى كل ٢ أيام و ٩ أيام و ٢ يوم) على انتاجية وخمس تراكيب وراثية من محصول الأرز وهى and (Giza 178), (IR 69625A/Giza 178), (IR70368A/Giza 178), (IR 69625A/Giza 178) (Giza 178) وهى and وهى المرو الرى كل ٢ أيام و ٩ أيام و ٢ يوم) على انتاجية وخمس تراكيب وراثية من محصول الأرز وهى الله (IR 69625A/Giza 178), (IR70368A/Giza 178), (IR 69625A/Giza 178) (Giza 178) (IR 69625A/Giza 181) (الاي في المتعادة في أربعة مكررات حيث تم وضع فترات (الرى فى القطع الأفقية والتراكيب الوراثية فى القطع الراسية. وتم دراسة عدة مؤشرات مختلفة لتحمل الجفاف مثل مؤشر التحمل البيئي (ATI) ، ومؤشر الحساسية للإجهاد (SSI) ، ومتوسط الإنتاجية (MP) ، ومؤشر التحمل (TOL) ، ومؤشر نسبة المئوية للحساسية للإجهاد (SSI) في تحديد أهم التراكيب الوراثية المتحملة لإجهاد نقص المياه هذا وقد أوضحت النتائج أن عدد الأيام حتى ٥٠٪ تزهير , ارتفاع النبات، طول الدالية، وزن الدالية، عدد الفروع فى الجورة، عدد أوضحت النتائج أن عدد الأيام حتى ٥٠٪ تزهير برايتاع النبات، طول الدالية، وزن الدالية، عدد الفروع فى الجورة، عد المنيبلات فى الدالية، عدد فروع الدالية، وزن ١٠٠ حجة، وعدد الحبوب الكلية فى الدالية، عدد الفروع فى الجورة، عدد المنيبلات فى الدالية، عدد فروع الدالية، وزن ١٠٠ حجة، وعدد الحبوب الكلية فى الدالية، عدد الفروع فى الحروة، عد المختلفة. تم الحصول على أعلى قيم لمحصول البيولوجي تأثروا معنويا بالتفاعل بين فترات الزى و التراكيب الوراثية المتحلة المراثيو الوراثية المتحملة المعندة، نسبة المغذي عد الحبوب طن للهكتار و المحصول البيولوجي تأثروا معنويا بالتفاعل بين فترات الزى و التراكيب الوراثية المختلفة. تم الحصول على أعلى قيم لمحصول الحبوب بواسطة (IR 2181) معاله المراثيو الماليم المي الموراثية المستمر المختلفة. تو الحصول على أعلى قيم لمحصول الحبوب بواصلة (IR 2025 م) تحت الزي بالغمر المي المو المو و المراثي المي الموراثي المامو الما الموسمان الترراكيب ال

السادة المحكمين

أ.د/ صابر السيد صديـــق مركز البحوث والتدريب في الأرز – كفر الشيخ
أ.د/ محمود الدسوقي إبراهيم كلية الزراعة – جامعة المنوفية