CHRACTERISTIC CURVES FOR RAPID AND ACCURATE INTERPRETATION OF GRAVITY ANOMALY DUE TO INCLINED FAULS

M. El-Bofuoty

National Research institute of Astronomy and Geophysics, Cairo,
Egypt.

Abstract

The families of curves present here have been carried out in order to find a simple technique for rapid and accurate determination of fault parameters. These curves are used in fitting inclined faults to gravity anomaly.

The families of curves depend on the theoretical formula of jung (1961). These curves are divided into groups, which contain therietical models, of faults ranging in dip between 10° and 80°. The depth is constant along each group and is different from one group to another. In order to complete the interpretation, the values of horizontal gradients, vertical gradient and amplitude were calculated and listed in separated tables.

It is impracticable to present these curves for whole ranges of dip and depths. Visual interpolation between these theroretical curives should permit reliable interpretation of any field curves.

INTRODUCTION

Many methods have been suggested for the interpretation of gravity anomalies over an inclined fault, Rho et al (1973) formulate functions of the anomaly at several distances from an arbitrary point and the linear equations. Chuta Raoand Ram Babu (1980), describe methods based on Hilbert transform (1980). Hammer and Anzoleaga (1975): Green (1975) stanley and Green (1975), and Abd El-Rahman and Meissner (1983), however, introduced a different method for

Charcteristic curves for rapid and accurate interpretation.........

evaluation of fault parameter's the other methods mentioned invoive reduction of field curves and matching with master curves.

The familie of curves present here have been carried out in order to find a simple technique for rapid and accurate determination of fault parameters. These curves depend on the theoretical formula of Jung (1961). They are divided into groups; each group contains a theoretical model of inclined fault ranging in dip between 19° and 80°, the depths are constant along each group and are different from one group to another.

The difficulty lay in the great number of curves required to represent all inclined faults for ail values of density contrast, to overcome this difficulty we use the knowing vaiues of T1T2 (where T1 and T2 are depth to the upper and lower sueface) and in eteming the density contrast along each profile; also visual interpolation between these theortical curves should permit reliable interpretation of any field carve. Keep in mind that these curves should fulfill the following conditions:
i- Accurate encugh to fumish diagnostic interpretataion yet.
2- Simple enough to permit rapid cpplication.

To complete the interpretation, the value of vertical gradient, amplitude and the amplitude function of the analytical signal of higher order were calculated to choose values of dip in each group and list them in separated tables (Table "I". "II").

Theoretical Background :

The gravity effect due to the inclined fault, Fig. (1) in given by Jung (1961) as :

$$
\begin{gathered}
\mathrm{g}(\mathrm{x})=2 \mathrm{G} \rho\left[(\mathrm { x } - \mathrm { b }) \operatorname { S i n } \alpha \left(\operatorname{Sin} \alpha \operatorname{LN} \frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}+\operatorname{Cos}\right.\right. \\
\left.\left.\left(\psi_{2}-\psi_{1}\right)+\mathrm{T} \psi_{2}-\mathrm{T} \psi_{1}\right)\right]
\end{gathered}
$$

where:
G : is the universal graviational constant;
ρ : is the density contrast between the body and its surroundings;
α : is the dip angle of the body flanks;
T_{1} : is the depth of the upper surface of the boried body
T_{2} is the depth of the lower surface of the byried body.
$\mathrm{r}_{1} \mathrm{r}_{2}$: are the distance between the corners 1,2 of the causative boay and the coservation point.
ψ_{1}, ψ_{2} : are the angle between x axis and $r 1, r 2$.
The vertical gradient $g z(x)$ of gravity is/
$\mathrm{gz}(\mathrm{x})=2 \mathrm{Gp}\left[\operatorname{Sin} \alpha \cdot \operatorname{Cos} \alpha \cdot \operatorname{Ln} \frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}-\operatorname{Sin},\left(\psi_{2}-\psi_{1}\right)\right]$
The vertical gradient of gravity can be calculated from the horizontal gradient of gravity using Hilbert transform techniques (Bracerell 1965) thus we have:

$$
g z(x)=g x(x) * \frac{(-1)}{\pi X}
$$

Where:
$\frac{(-1)}{\pi X}$: is the Hilbert - transform of the derac Delta impulse.
$\mathrm{gx}(\mathrm{x})$: is the Horizontal gradient

The modulus of the analytical signal is given by
$A(x)=\left[g z(x)^{2}+\left(g x\left(x^{2}\right)\right]^{1 / 2}\right.$
The modulus of the amplitude function of the analytical signal of thrid order is calculated according to the equation :
$A(x)=\left[\operatorname{gzxx}(x)^{2}+\operatorname{gxxx}(x) 2\right]^{1 / 2}$.
Evaluation of the density contrast using the known values $T_{1} T_{2}$ and : α
The gravity values at point (c) on the ground surface (Fig. (2), the equation (1) reaches maximum values as at $\psi_{1}=\psi_{2}$.

Thus, the entire interpretation process for evaluation of the density contrast is summarized in the following steps.

1- A vertical line is drawn vertically from maximum values of gravity profile over the inclined fault, this line intersec with the ground surface in point (c).
2. A line with the angle α dravin from the point C fig. (2) intersects the iwo horizontal lines A and B which represent the depths to the upper and lower, surfaces of the known fault.

3- The previous steps are used to draw the models of fault from these models and by applying equation (1) and from knowing the values of $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and α we can determine the density contrast.

Interpretation procedure :

For rapid interpretation of gravity profiles using the constructed curves, the

FIG (1)isOHETRI OF FAULT PARAMETERS

Charcteristic curves for rapid and accurate interpretation.........

following procedure is recommended.

1- The selected profile is taken perpendicular to the strike of the fault.

2- A dastement of horizontal scale of gravity profile with the horizontal scale of the theoretical curve is made.

3- The curve matching process is carried out between the theoretical and selected profiles.

4- When the selected profile coincides with the theoretical profile we use the known values of $\mathrm{T} 1, \mathrm{~T} 2$ and (α) to evaluate the density contrast as explaines in the previous positions.

5- Using tables (1,2) in completing of the interpreation. we get vertical gradient, amplitude and amplitude functaion of the analytiacal signal of higher order. ACKNOWLEDGEMENTS

The author wishes to express his deep thanks to prof. Dr. Ahmed Sabry, professor of Geophysics Ain Shams University for his continucus help, a valuable advice and encouragment for preparing this paper.

M. El-Bohoty

Tabie (1): The calculated values of $G 7(x), A(x)$ and $A z(x)$

Charcteristic curves for rapid and accurate interpretation.........

Table (II): The calculated valucs of $\mathrm{Gz}(\mathrm{x})$ and $\mathrm{Az}(\mathrm{x})$ comainued.

No	$\mathrm{T}_{1}=2 \mathrm{~km}$		$\mathrm{T}_{2}=6 \mathrm{~km}$		$\mathrm{T}_{1}=3.0 \mathrm{~km} \mathrm{~T}_{2}=6.0 \mathrm{~km}$					$\mathrm{T}_{2}=3 \mathrm{~km} \quad \mathrm{~T}_{2}=7 \mathrm{~mm}$					$\mathrm{T}_{1}=1 . \mathrm{ckn} \mathrm{T}_{2}=4.9 \mathrm{~km}$				
	G2	$\mathrm{Gz}(\mathrm{x})$	$A(x)$	A3(x)	No		Gz(x)	A(x)	$\bar{A} 3(x)$	No		Gz(x)	$A^{\prime}(\mathrm{x})$	A3(x)	No		$\underline{G z}(\mathrm{x})$	A(x)	$\mathrm{A} 3(\mathrm{x})$
1		.3.56	10.68	0.14	1		-2.6	7.39	0.27	1		-2.37	6.71	0.053	1		-1.3	3.56	0.41
2		-2.62	7.94	0.14	2		-2.97	8.49	0.32	2		-2.65	7.53	0.26	2		-1.27	3.56	0.01
3		-2.76	¢. 35	0.13	3		-3.33	9.58	0.65	3		-2.98	8.49	0.41	3		-1.5	4.1	0.081
4		-3.25	9.31	0.54	4		-1.73	10.6	0.1	4		-3.25	9.31	0.54	4		-1.73	4.87	0.19
5		-3.62	;0.21	0.37	5		-3.68	11.22	0.103	5		-3.58	10.26	0.73	5		-2.02	5.51	0.42
6		-4.08	12.12	0.082	6		-4.04	11.84	. 095	6		-3.84	11.09	0.78	6		-2.36	6.57	0.36
7	x^{6}	-4.92	14.51	0.22	7	20°	4.2	12.19	12.19	7	20	4.0	11.77	0.82	7	25	-284	8.01	1.68
8		-5.03	14.8	0.46	8		-4.03	11.98	. 043	8		-4.4	12.6	0.86	8		-3.17	8.97	3.01
9		-5.1	14.92	0.86	9		-3.72	11.23	0.04	9		-4.53	13.28	0.79	9		-3.98	11.36	4.02
10		-5.23	15.2	1.79	10		-3.28	9.98	0.6	10		-4.6	13.55	0.65	10		-4.62	13.28	4.13
11		-5.36	15.47	4.07	11		-2.56	7.94	1.69	11		-4.58	13.56	0.47	11		-5.1	14.8	3.5
12		-5.39	15.5	10.62	12		-1.8	5.75	3.65	12		-4.45	13.28	0.24	12		. 5.44	15.9	1.2
13		-5.25	14.9	27.2	13		-0.76	2.67	1.44	13		-4.3	12.87	0.14	13		-5.7	16.77	1.53
14		. 4.82	13.55	85.34	14		-. 38	1.51	0.93	14		-3.83	11.64	1.56	14		-5.9	17.0	12.6
+1		-4.43	9.0	0.12	1		-9.12	11.23	0.94	i		-6.81	10.55	. 046	1		-2.3	8.3	. 086
2		-5.04	10.2	0.11	2		-9.3e	12.35	0.09	2		-7.6	11.84	0.74	2		. 3.4	9.78	. 025
3		-6.55	15.11	0.24	3		-9.0)	11.59	. 092	3		-9.76	15.18	0.121	3		. 4.25	10.9	. 1
4		-7.27	14.6i	0.14	4		-8.34	110\%	0.13	4		-10.4	16.2	0.166	4		-5.31	12.08	. 02
5		- 8.0	16.1	0.5i	5		-3.6	4.91	. 092	5		-10.9	16.98	. 23	5		.7.8	14.66	. 044
6	40	-8.94	17.8:	. 07	6	40°	-1.49	2.16	. 068	6	40°	-10.6	16.72	0.27	6	40	. 9.04	17.11	. 09
7		-9.29	18.41	3.93	7		-1.49	2.16	. 08	7		-10.63	16.7	. 025	7		-16.64	18.9	. 148
8		-8.74	17.2	10.69	8		-9.08	0.212	. 04	8		-9.81	15.44	. 31	8		- 15.8	16.92	0.25
\%		-15.7	16.92	0.26	9		1.25	1.54	.132	9		-6. 26	10.4	. 28	9		-16.9	17.5	0.3
10		-6.24	12.01	9.7	10		1.99	2.45	. 4	10		-5.59	9.0	0.18	10		$\therefore 46$	5.65	. 06
11		-304	8.09	10.4	11		1.9	2.45	. 052	11		-4.59	7.5	. 083	11		2.04	2.09	. 09
12		-2.4	3.48	6.53	12		2.15	2.76	. 07	12		-1.78	3.1	. 03	12		c.0s	9.59	. 068
13		-.82	1.22	5.12	13		2.1	2.7	.03	13		-. 66	1.3	. 066	13		6.77	7.2	. 07
14		-4.8	13.55	8.34	14		-. 38	1.51	0.93	14		-3.8	11.64	1.56	14		: 8.8	7.2	0.8
1		-11.4	13.17	0.14	i		-9.56	11.1	0.1	1		-10.5	12.15	.055	1		. 38	5.7	.4]
2		-12.51	14.4	0.64	2		-7.08	8.23	0.154	2		-11.93	13.87	0.14	2		-. 34	6.4	. 1
3		-13.86	15.59	0.128	3		-8.29	10.4	0.145	3		-12.25	14.2	. 063	3		-. 3	7.7	0.23
4		-7.27	14.61	. 135	4		-8.34	11.4	0.13	4		-11.0	17.26	0.25	4		. 25	9.1	1.05
5		-14.23	16.3	1.69	5		-3.47	4.15	0.14	5		-11.9	13.8	. 018	5		-. 21	11.9	1.66
6		-12.7	14.56	5.08	6		-. 17	. 43	. 06	6		-9.77	11.5	. 019	6		. 18	13.11	0.55
7	60	-9.29	18.41	3.91	7		. 135	. 93	3.81	7		. 15	-296	. 098	7		0.15	15.81	1.81
8		-4.7	5.21	8.45	8		3.37	3.81	. 045	8		1.63	1.8	. 08	8		\cdots	18.21	2.33
9		3.9	3.12	8.6	9		3.66	4.15	. 05	9		3.11	3.47	. 09	9		-. 11	19.62	2.52
10		2.73	3.12	0.1	10		3.55	3.81	. 03	10		3.7	4.16	. 07	10		. 15	20.3	2.22
11		3.93	4.5	. 06	11		3.6	3.65	. 05	11		3.9	4.51	. 08	11		-. 16	21.1	2.6
12		4.1	4.6	. 07	12		3.7	3.71	. 03	12		4.0	4.6	. 081	12		-. 163	18.1	2.5
13		4.2	4.7	. 072	13		3.8	3.65	. 06	13		4.1	4.7	. 091	13		-.17	19.1	2.6
14		3.9	4.3	. 08	14		3.9	3.7	. 07	14		4.2	4.5	. 93	14		-15	20.1	3.5

M. El-Bohoty

Plate-1

Plate 1 三
Master Curves for interpritation Gravity anowaly due to inclined Fault
there :
$T_{1}=$ depth to upper surface $=0.5 \mathrm{~km}$
$T_{2}=$ depth to lower suriace $=3.0 \mathrm{Km}$
$\underline{\mu}=$ amgle of dip rangiug from $0-80^{\circ}$

Charcteristic curves for rapid and accurate interpretation.........

Plate2:
Master Curves for interpritation Gravity anomaly dut to incluned Fault
Hhere :
$T_{1}=1.0 \mathrm{Kx}$
$T_{2}=3.0 \mathrm{Km}$
$\alpha=$ angle of dip ranging from $0-80^{\circ}$
M. Ei-Bohoty

Plate3:
mister Curves for interpritation Giavity anomaly due to inclined Fault
做ere :
$r_{i}=1.5 \mathrm{rs}$

$$
\mathrm{T}_{2}=3.0 \mathrm{Km}
$$

$a=$ angle of dip ranging from $0-80^{\circ}$

Charcteristic curves for rapid and accurate interpretation.........

P1e亡⿴-4

Plate4:
Master Curves for interpritation Gravity anomaly due to inclined Fault

Where :
$T_{1}=1.0 \mathrm{Km}$ $T_{2}=5.0 \mathrm{Km}$
$a=$ angle of dip ranging from $0-80^{\circ}$

Plate5:
Mester Curves for interpritation Gravity anomaly due to inclined Fault

There
$T_{1}=1.0 \mathrm{~km}$
$T_{2}=2.0 \mathrm{Km}$
$c=$ angle of dip ranging frox $0-8 C^{\circ}$

```
Charcteristic curves for rapid and accurate interpretation........
```


M. El-Bohoty

PIatet:
Master Cirves for intexpritation Gravity anomaly due to Inclined Fault
winere
$\mathrm{T}_{1}=3.0 \mathrm{Km}$
$T_{2}=6.0 \mathrm{Nin}$
$a=$ angle of dip ranging from $0-30^{\circ}$

Charcteristic curves for rapid and accurate interpretation.........

Plate日:
Master Curves for interpritation sravity anomaly due to inclined Fault
Where :
$T_{1}=3.0 \mathrm{Kn} \quad T_{2}=7.0 \mathrm{~km}$
$\alpha=$ angle of dip ranging Erom $0-80^{\circ}$

REFERENCES

Abd El Rajman, M.M., and Meissner, R., 1983, Calculation of fault parameters using gravity gradients, Egyptian Geophysical society, Cairo ppl 218-238.

Atchuta Rao, D., Ram Babu, H.V., and Sankar Narayan, P.V., 1980, Relationship of anomalies due to subsurface features and the interpretation of sloping contacits : Geophysics, 4i, 32-36.

Green, R., 1975, Accurate determination of the dip angle of a geological contact using gravity mehtod. Geoph pros., vol. 20, pp. 265-272.

Hammer, S., and Anzoleaga, R., 1975, Exploration for stratigraphic traps with gravity gradients. Geophysics. VOl. 40.p. 256-268.

Jung, K., 1961 Schwere krafrrer fahern in der angewandeten physik, Akademische verlags resel schaft, leipzing.

Mohan, N.L., Sundararajan, N., and seshagiri, Rao, S.V., 1982, Interpretation of some two-dimensiontal magnetic bodies using Hilbert transform Geophysics, 47. 376-387.

Rao, B.S.R., Radhakrishna Murthy, I.V., and visweswara Rao, C., 1973, A direct method of interpreting gravity and magnetic anomalies. The case of horrezontal cylinder pure and Appl. Geophysics 102, 67-72.

Stanley, J.M., and Green, R., 1976, Gravity gradients and the interpretation of the tranncated plates, Geophysics, vol. 41, P. 1370-1376.

 مصحد السعيد عبد الفتاح اللهوتى
 مدرس بالمعهد القومى للبحوث النلكية والجيونيزيقية

هذه المجموعة من المنحنبات المييزة تم تصميمها من أجل ايـجاد طريقة سريعة ودقيقة لتحديد معاملات الفوالث المائلة وذلك من خلالل التباينات الثثثاقلية لها .

وتعتعد هذه المنحنيات علي المعادلات النظية اللعالم يانج 1971 وكذللك على الأسس النظرية التى وضعها العلماء السابقون فى تفسير الفوالتق المائلة ، وتد تم تقسيم طنذه ألمنحنيات إلى مجموعات تحتوى كل مجموعة على تيم ثابتة اللعمق مـي
 المبل بالنسبة للعمق الواحد ، واستكمالا للتنسير الدقيق وحتى تكون المعطيات كانملة

 هذه القيم حساب قيم الكثانة وذلل باستخذام خواص الداللة التحويلية وباستخذام . معادلة الفالق المائل

وهذه الطريقة تتميز بائسهولة وكذلك الدقة وإيضا باتساع نطات التطبيت لها .

