Menofia University Faculty of Engineering Shebien El-kom First Semester Examination Academic Year : 2012-2013

Department : Electrical Eng. Year: $3^{\text {rd }}$
Subject : Eng. Mathematics Time Allowed: 3 hours
Date : $16 / 1 / 2013$

Allowed Tables and Charts : None

Answer all the following questions: [70 Marks]

Q. 1 (A) Show that the set of functions $\{\sin (n \pi x)\}, n=1,2,3, \ldots$ are orthogonal on the interval (0,1).
(B) Expand the function $f(x)=x$ in terms of $\sin (n \pi x)$, on the interval $(0,1)$ using the generalized Fourier series.
[3 Marks]
(C) Solve the P.D.E. $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+(\sin 5 x) e^{-2 t}, 0<x<\pi, t>0$.

Subject to the boundary conditions: $u(0, t)=0, u(\pi, t)=1$ and initial condition $u(x, 0)=0$
[8 Marks]
(D) Consider the following PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}=-2 \frac{\partial u}{\partial t}, \quad 0<x<1, \quad t>0
$$

Subject to: $\quad u(x, 0)=0, \quad u(0, t)=0, \quad$ and $\quad \frac{\partial u(1, t)}{\partial x}=1$
State the type of the equation (parabolic, elliptic or hyperbolic) and the boundary conditions (Dirchlet, Neumman, Robin or mixed) then solve the equation for $u(x, t)$.
(E) Express each equation in terms of conjugate coordinates:
(i) $2 x+y=5$
(ii) $x^{2}+y^{2}=36$
[4 Marks]
(F) i) Prove that the function $u=2 x(1-y)$ is harmonic.
ii) Find a function v such that $f(z)=u+i v$ is analytic.
iii) Express $f(z)$ in terms of z.
(G) Find the cube root of 10 using Newton-Raphson method, take $x_{o}=2.1$.
(A) (i) find the real root of the equation $x^{3}-x-11=0$ in the interval $2<x<3$ using the method of bisection.
(ii) Discuss (ناقش) with graphs three drawbacks (عيوب) of NewtonRaphson method for solving non linear algebraic equation. [4 Marks]
(B) (i) Solve the following equation $x e^{x}-2=0$, using NewtonRaphson method. Take $x_{o}=0$, make two iterations.
(ii) Use the formula $\cosh (x) \approx 1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$ to evaluate $\cosh (x)$ and find the truncation error .
[4 Marks]
(C) Use Euler's and Rung-Kutta $4^{\text {th }}$ order method to solve the differential equation $\frac{d y}{d x}=y-x^{2}+1$ to obtain the value of y at $x=0.4$ knowing that $y(0)=0.5($ take $h=0.4)$.
[6 Marks]
(D) Given the following linear system of algebraic equations:

$$
\begin{aligned}
x_{1}+4 x_{2}+2 x_{3} & =15 \\
2 x_{1}+x_{2}+5 x_{3} & =19 \\
3 x_{1}+x_{2}+x_{3} & =8
\end{aligned}
$$

(i) If you solve this system without ordering the equations, What do you expect? Discuss the convergence of this system through Scarbora criteria.
(ii) Order your equations in an appropriate way. Use Gauss-Seidel iterative method to make two iterations.

$$
\begin{equation*}
\text { Use } x_{1}^{(0)}=x_{2}^{(0)}=x_{3}^{(0)}=1 \tag{6Marks}
\end{equation*}
$$

(E) Show that the function $w=f(z)=z^{2}+3 z$ is analytic. Then evaluate $\int_{C} f(z) d z$ along
(i) The straight line from $(2,0)$ to $(0,2)$
(ii) The straight line from $(2,0)$ to $(2,2)$ and then to $(0,2)$.
[6 Marks]

Dr. Islam M. Eldesoky

