Menofia University
Faculty of Engineering
Shebien El-kom
First Semester Examination
Academic Year : 2012-2013Department : Electrical Eng.
Year : 3rd
Subject : Eng. Mathematics
Time Allowed : 3 hours
Date : (6/1/2013

Allowed Tables and Charts : None

Answer all the following questions: [70 Marks]

Q.1 (A) Show that the set of functions $\{sin(n\pi x)\}$, n = 1, 2, 3, ... are orthogonal on the interval (0, 1). [3 Marks] (B) Expand the function f(x) = x in terms of $sin(n\pi x)$, on the interval (0,1) using the generalized Fourier series. [3 Marks] (C) Solve the P.D.E. $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial r^2} + (\sin 5x)e^{-2t}$, $0 < x < \pi$, t > 0. Subject to the boundary conditions: u(0,t) = 0, $u(\pi,t) = 1$ and initial condition u(x, 0) = 0[8 Marks] (D) Consider the following PDE $\frac{\partial^2 u}{\partial r^2} = -2 \frac{\partial u}{\partial t}, \qquad 0 < x < 1, \qquad t > 0$ u(x,0)=0, u(0,t)=0, and $\frac{\partial u(1,t)}{\partial r}=1$ Subject to: State the type of the equation (parabolic, elliptic or hyperbolic) and the boundary conditions (Dirchlet, Neuman, Robin or mixed) then solve the equation for u(x,t). [8 Marks] (E) Express each equation in terms of conjugate coordinates: (i) 2x + y = 5 (ii) $x^2 + y^2 = 36$ [4 Marks] (F) *i*) Prove that the function u = 2x(1 - y) is harmonic. *ii*) Find a function v such that f(z) = u + iv is analytic. *iii*) Express f(z) in terms of z. [12 Marks] (G) Find the cube root of 10 using Newton-Raphson method, take $x_0 = 2.1$. [6 Marks]

0.0	0
Q.2	(A) (i) find the real root of the equation $x^3 - x - 11 = 0$ in the
	interval $2 < x < 3$ using the method of bisection.
	(ii) Discuss (ناقش) with graphs three drawbacks (عيوب) of Newton- Raphson method for solving non linear algebraic equation. [4 Marks]
	(B) (i) Solve the following equation $x e^{x} - 2 = 0$, using Newton-
	Raphson method. Take $x_o = 0$, make two iterations.
	(ii) Use the formula $cosh(x) \approx 1 + \frac{x^2}{2!} + \frac{x^4}{4!}$ to evaluate $cosh(x)$ and
	find the truncation error.
	(C) Use Euler's and Rung-Kutta 4 th order method to solve the differential
	equation $\frac{dy}{dx} = y - x^2 + 1$ to obtain the value of y at $x = 0.4$
	knowing that $y(0) = 0.5$ (take $h=0.4$).
	(D) Given the following linear system of algebraic equations:
	$x_1 + 4x_2 + 2x_3 = 15$
	$2x_1 + x_2 + 5x_3 = 19$
	$3x_1 + x_2 + x_3 = 8$
	(i) If you solve this system without ordering the equations, What do you expect? Discuss the convergence of this system through Searborn criteria
	(<i>ii</i>) Order your equations in an appropriate way. Use Gauss-Seidel
	Use $x_1^{(0)} = x_2^{(0)} = x_3^{(0)} = 1$. [6 Marks]
	(E) Show that the function $w = f(z) = z^2 + 3z$ is analytic. Then
	evaluate $\int f(z) dz$ along
	(i) The straight line from (2,0) to (0,2) (ii) The straight line from (2,0) to (2,2) and then to (0,2).
	[0 Marks]
	VVILII VILY UCSL VVISVICS

Dr. Islam M. Eldesoky