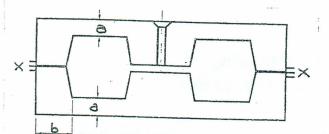
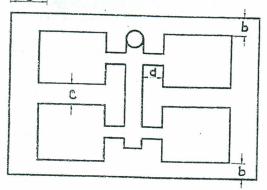
MANSOURA UNIVERSITY FACULTY OF ENGINEERING Dept. of Production Eng. & M/Cs Des 1st year Production Eng. Forming processes & Equipment (5/25) Final Exam : 19-06-2012 Time: 3 Hours Max. Marks[90 Marks]

Please, Answer the following questions:-

CASTING PART [45]


- Q1-a) Design the gating and risering systems for the Bronze mechanical part as show in the Figure, where $\gamma_s = 8.92 \text{ gr}/\text{cm}^3$, $\gamma_L = 8.90 \text{ gr}/\text{cm}^3$, $\mu = 0.3$, $t_{av} = 20 \text{ mm}$, and its small casting. [Assume any messing data]. [10] 55. **b**) Describe some special types of patterns and indicate the production circum stances in which each would used? [4] io 100 mm Q2-a) Explain the basic difference between die pressure casting and centrifugal casting from the stand point of the equipment and the methods by which they are made? [5] **b**) Of what material the patterns are made? [3] c) Describe briefly the CO₂ method of making cores and list some of its advantages. [4] Q3-a) Explain the term hot spot and what features of Casting design could lead to it. How will a hot spot manifest itself as a casting defect? [6] **b**) What is the propose of feeding a casting? [5] c) Describe the process of shell moulding and give its advantages. For what applications it will best fit? [8] WELDING PART [45] Q1-a) Which welding process can be used to weld two steel parts without melting them or without adding filler metal? [12] [6] **b**) What factors must be Considered when selecting a coated welding rod? c) What do you understand by straight polarity and reverse polarity when arc welding [8] with direct current? Is there any choice of polarity in A.C. welding and why? Q2-a) what are the principal component parts of the equipment used for Submerged arc welding? [8] b) Explain the principle of atomic hydrogen welding, and the role of hydrogen in this welding? [7] c) Explain carefully Laser welding method. [10] **P.T.O.** Good Luck أنظر خلفه Prof. Dr Eng. M. SAMUEL
 - 1/2


Table (1) Gating Ratio

Material	Area of Spure	Area of Runner	Area of Ingat
Cast Iron	4	3	2
Steel	1.11	1.06	1.0
Aluminum alloy	1.0	3.0	3.0

Table (2) Shrinkage Allowances

Pouring Material	Shrinkage %
Carbon Steel	1.81-2.0
Mangan. Steel	2.2-2.4
C.I (Thin)	1.0-1.25
C.I.(Thick)	0.5-1.0
Aluminum Alloys	1.25
Zink	1.5
Bronze	1.5
Tin	0.5

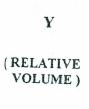
Table (5) Distan	ice between	n Flask an	d Mould c	avity
Casting	The Distance (mm)			
Weight (Kg)	a	b	C	d
Up to 5	40	30	30	30
5-10	50	40	40	30
10-25	60	50	50	30
25 - 50	70	50	60	40
50-100	90	60	70	50
100-250	100	70	100	60
250-500	120	80		70
500-1000	150	90		120
1000-2000	200	100		150

Table (6) Flask Dimensions

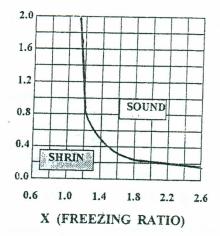
Up to 500 mm – steps by 50 mm
500-1000 mm- steps by 100 mm
Over 1000 mm- steps by 200 mm
Up to 100 mm - steps by 10 mm, than 120, 150 mm
Over 150 mm – steps by 50 mm

Casting Size mm	Allowances (mm)			
	Upper Surface	Surface	Inner Surface	
	Cast	Iron		
Up to 150	5	3	3	
150 - 300	6	3	3	
300 - 500	6	5	6	
500 - 900	8	5	6	
900-1500	4	6	8	
	Ingots	Steel		
Up to 150	6	3	3	
150-300	6	5	6	
300 - 500	8	6	6	
500 - 900	10	6	7	
900 - 1500	13	7	8	
	Non-Ferro	us Metals		
Up to 75	2	2	2	
75 - 200	3	2	3	
200-300	4	2	3	
300-500	4	3	3	
500-900	5	4	4	

Table (4) S Factor


900-1500

Av. Thickness (mm)	Small Casting	Medium Casting	Heavy Casting
2.5-4.0	1.1	1.55	
4.0-8.0	1.25	1.77	
8.0-16	1.5	- 2.12	
30-50	1.75	2.24	0.5
80-120			0.8
230-300			1.7
300-600			2.6


4

6

RISERING CURVE

2/2

4