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Fourier-Plane Spot Array Generation Using Ion-Exchanged Diffraction

. . Grating : Experimental and Theoretical Study
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Abstraci— In This paper, we have employed a double-ion exchanged diffraction grating, to
generate experimentally Fourier spot plane arrays. The grating-length-to-beam-width ratio
(dAwvp) is found to be an important parameter in determining device performance. With beam
width 20um (wo=20um), center wavelength of A=0.6328um, and changing in interaction
length (d) and incident angle severa! basic results are predicted. We compared our results
with the numerical solution using fast Fourier transform beam propagation method (FFT-

BPM) and there is a good agreement between them.

Key words : grating, diffraction, fast Fourier trasisform beam propagation method

(FFT-BPM).

1. Introduction

Recently, there has been significant
progress in the development of two -
dimentional  arays of optical and
optoelectronic devices. One of the most
important technologies for these devices is
the SEED (self-electrooptic effect device )
technology, which based on muitiple
quantum-weil(MQW) modulator. Multiplie
quantum wells consist of thin altemating
layers of narrow-and wide-bandgap
materials such as GaAs and AlGaAs.

The (SEED) technology requires an
optical power supply to clock the device.
The generation of 2D arrays of uniform
intensity spots requircs two basic
components. The first is a high-power,
single frequency, diffraction—limited laser
that can provide the appropriate power per
pixel required to meet the system speed
requirements. The second is some

mecnanism to ecually ard uniformly
Civide the pover from the laser and
distribute it to ihe optical windows of the
SEEDs[l]. There are several different
approaches to the distribution of opical
power to SEEDs smart pixels. The
approach that has been pursued in the
AT&T system demonstrators was Fourier—
plane spot array generation using binary
phase grating (BFG) to uniformly
distributing the optical power to the
SEEDs[2-4]. '

lon — exchanged glass waveguides have a
lot of advantages compared with other
waveguide technologies. First, the
refractive index of glass can be very close
to that of fibers, and a perfect match of the
waveguide mode with conventional
Single-mode fiber (SMF) is possible.
Second, for most optical glasses, the
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attenuation due to absorption at
telecommunication  wavelength is very
low. Third, most glasses have negligible
birefringence. Finally and most altractive,
the ion-exchange process is simple and
reproducible [5].

For the above advantages we have
fabricated an optical grating by the double
ion-exchange technique[6] and used it
experimentally to generate Fourier spot
plane arrays.

2- Description of grating in terms of the
Fourier transform

Fourier transforms is a mathematical
operation which relate function in real
space to a corresponding set of functions
in "reciprocal space”. An example of this
is the relationship between an object and
its Fraunhofer diffraction pattern. Features
which are large in real space are small in
reciprocal space and vice versa. A
multiplication in real space leads to a
convolution in reciprocal space and the
convolution in real space leads to
multiplication in reciprocal space, a shift
in real space leads to a change in phase in
reciprocal space.

Let us now consider grating within this
framework. Our starting point is a "Dirac
comb” : a function which consists of an
infinite series of delta functions separated
by a distance A as in Fig.(1), The Fourier
transform for this Dirac comb is simply
given by [7-9]

n=0
Y exp(2Iljn A 5)
n=—c0

where s is the point in the plane of the
focused diffraction pattern defined by
(sin@)/A=5 and @ is the angle of incidence.
If we take the terms in pairs corresponding
to +n and —n

7=00
Y. exp(2T1jn A s) + exp(-2[jn A 5) =

H=

n=h

3 2cos(211n A s)

n=0
if (AS) is an integer m then the value of
cos(2IInAS) is umity. If (AS} is not an
integer then the series sums to 2er
because for any value of (2ITnAS) later in
the series there will be a corresponding
value of (2ITnAS+IT) which will cancel it.
The Fourier transform of a Dirac comb of
spacing A is itself a Dirac comb but of
spacing (1/A) since the function is zero
everywhere except when S=m/A or
Asine=m}) which is of course the grating
equation for nommal incidence and the
peaks of the Dirac Comb in the Fourier
transform are simply the diffracted orders
of the grating.
In practice gratings are not infinite in
extent and we may represent this by
multiplying the Dirac Comb by a top-hat
function, as shown in Fig.2(a).The result
of this is that in reciprocal space the Dirac
Comb is convoluted with the sinc function
( sin B/ ) ( where B=J1 AS) which is the
Fourier transform of the finite aperture,
and this is shown in Fig.2(b). Thus we see
that in practice the spectral image has a
finite width which is inversely
proportional to the width of the grating.
Again, in practice, gratings do not consist
of series of infinitely narrow slits but of
grooves of finite width and recognizable
profile. The groove profile is then
convoluted with the basic Dirac Comb and
we would therefore expect that the
reciprocal Dirac Comb would be
muitiplied by the Fourier transform of the
groove profile so that the various spikes
would have different intensities. We may
now regard a diffraction grating as a Dirac
Comb multiplied by a top-hat function and
convoluted with a groove profile. In the
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plane of the focused spectrum we observe,
for each wavelength incident upon the
grating, its Fourier transform which
consists of a Dirac Comb (the orders of
diffraction) convoluted with a sinc
function (due to the finite width) and
multiplied by an envelope function (the
blaze effect of the grooves). In real space
we have Fig. 3(a) and in reciprocal space,
Fig. 3(b).

This description gives us a neat summary
of the properties of a grating and
demonstrates the way in which the various
aspects of a grating affect its performance.
The resuits relating to a perfect grating
have already been obtained by other
means, but the wvalue of the Fourier
transform view of a grating is that it gives
us some immediate intuitive insight into
the effects of deviations from perfection.

J- Experimental set-up and results

The phase grating used in the present
application is made by ion— exchanged
technigue [6] .This grating is illuminated
by a plane wave from a laser source (A=
0.6328 um ) as illustrated in Fig. 4. The
light transmitted through the grating is
Fourier transformed at the back focal
plane of the lens which is output plane of
the spot array generator. Because of the
long grating interaction length, the
features of the finite beam diffraction are
expected to be easily observed in the
waveguide geometry. Fig. 5 shows the
photographs for diffraction pattern from
our grating using laser beam A= 0.6328
pm with width wp=20 um and incident

angle on the grating by a Bragg angle -

(1.2°) at different interaction lengthes (d).
Fig.(5-i-a) shows the patterns at d=474
um ,Fig(5-i-b) at d=600 um, and Fig.(5-i-
c) at d=850 pum. It is clear that at d=474pm
the output power is concentrated in one
order, by using a cylinderical lens. This
pattern changes to a light spot as shown in

Fig.(S5-ii-a) and by using MATLAB
programe this light spot changes to a beam
intensity curve as shown in Fig.(5-iii-a).
By the same manner the diffraction
patterns at d=600um (where the zero and
the first order (z 1) diffraction pattemns are
observed) and at d=850 um (where multi-
orders  diffraction  patternsare  are
observed) are obtained as shown in Fig.(5-
i-b,c) as well as their light spots by using
cylindrical lens also obtained as shown in
Fig.(5-ii-b,c).  Finally  their  beam
intensities are obtained by using
MATLAB program as in Fig(5-iii-b,c).
From the above curves of Fig.(5) a
number of light spots can be obtained by
changing the grating interaction length (d).

4- Numerical solution nsing fast Fourier
transform beam  propagation
method ( FFT-BPM ).

A beam propagation method (BPM) is a

method to simulate the propagation of an

optical beam excitation along a waveguide
structure. Various kinds of BPMs, such as
fast Fourier transformation (FFT-BPM)

[10-11] are used.

The BPM is essentially a particular

approach for approximating the exact

wave equation for monochromatic waves,
and for solving the resulting equations
numerically. In this section, the basic
approach is illustrated by formulating the
problem under the restrictions of a scalar
field (i.e., neglecting polarization effects)
and paraxiality (i.e., propagation restricted
to a narrow range of angles), BPM is
based on Maxweli’s equations [10] and
the scalar wave equation for the
propagating beam problem is deduced as

(i

0*u ou 0u du

aZZ @2

42 Btk ——+ (k- fu=0
jﬁaz+a:c2 k* =B
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where k = k on?, ﬂ2= k o°no and k is
known as the wave- number. In free space,
ko= 20/ ). n(x,y) is the refractive index
distribution of waveguide structure, and n,
the reference refractive index to be
appropriately chosen.

It is now assumed that the variation of u
with z is sufficiently slow so that the first
term of u above can be neglected with
respect to the second; this is the familiar
slowly varying envelope approximation,
and in this context it is also referred to as
the paraxial or parabolic approximation.
With this assumption and after slight
rearrangement, the above equation reduces
to

2
o LA IR
& 28 & oy

This is the basic BPM equation in three

dimensions (3-D). Simplification to two

dimensions (2-D) is obtained by omitting
any dependence on y. Given an input field

u (x,y,z=0), the above equation determines

the evolution of the field in the space z>0.

In the beam propagation method one

propagates an input field u(x,y,z) over a

small distance Az to obtain the field at

z+Az. The FFT-BPM calculation
procedure for a period Az can be
summarized as follows [12], where steps

i-v correspond to the labels in Fig. (6):

LAt the propagation position z, one
calculates the spectral domain wave
function Upy(z) in the Fourier transform
domain by taking the Fourier transform
of the space-domain wave function
U(x,y.z).

il. To get the transformed wave function

Umn(z + Az/2) at 2 + Az/2, one multiplies
(2m)? m : 4 (M
exp( j m [( ) (Y) 1az)
by the spectral domam wave function
Unn(2) obtained in step i This

multiplication  corresponds to  the

propagation over the distance Az/2 in free

space, where X= Ax.i,
0<i<M-1, Y= Ay.h, 0<h<N-1, X= Ax.M.,

MR2<msM72-1, Y=Ay.N, -N/2<n<N/2-1,

X and Y are the widths in the x and y

directions.

§ii.Taking the inverse Fourier transform of
the spectral domain wave function
Uma(z+A2/2) obtained in step ii, one
obtains the space-domain wave function
u(x,y,z+az/2) just in front
of the phase-shift lens. Then,
multiplying the phase-shift term exp{-))
due to the phase-shift lens by the space -
domain wave function u(x,y,z+Az/2},
one obtains the space-domain wave
function just after the phase-shift lens:

exp(-i0u(x,y,z+Az/2)
where
2
ko 2
X = {(n +An)2-n ff YAz -
2k o "

Iv.Taking the Fourier transform of the
space-domain wave function just after
the phase-shift lens and multiplying it by

(2x)? {(

2
ap =) +( S)'1az)

exp{ j-——

corresponding to the propagation over
Az/2 in free space, we obtain the spectral
domain
wave function Upna(z + Az) at z + Az,
v.When the space-domain wave function
u(x, y, z + Az) at z + Az is necessary,
one must take the inverse Fourier
transform of the spectral domain wave
function Upny.(z + Az) obtained in step
iv[10}.
Repeating steps i-v, we can get the space-
domain wave function at the target
propagation position. It should be noted
that if the space-domain wave function at
each z + Az is not necessary, one should
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return directly to step ii from step iv and
repeat steps ii-iv.

The accuracy of the method of course
depends on the smallness of the step size
Az and the grid size Ax, Ay, as well as on
the size of computation domain.

The numerical simulations are applied to
planar diffraction grating waveguide [6].
The measured values of the grating of the
effective refractive index of the guided
wave mode (n. and n.;} have been done
with a He-Ne laser (A=0.6328um) through
‘prism couplers  are equal to n.=
1.512689, n.; = 1.513739, periodicity of
the grating is {(A=10 pum) with incident
angle of the optical wavelength as a
Bragg angle is given by

el

B, =sin"[ 4 } 0, (A )=1.1985085"
2n, A

A Gaussian profile whose full width at
half maximum s w,=20 pm is used as the
initial field profile U (x,,z,)=expf2x’/w,’).
The computational window is 150 um for
the simulation. The accuracy of the resuits
depend on the number of grid points N in
the transverse X direction, and the size of
the propagation steps, Az in the direction
of propagation, z-direction. For N=128,
Az=1 pm the simulation results are shown
in Fig. (7-ab) for a beam intensity at
interaction length 474pm. For more details
refer to [12].

5 Verification of experimental results by
FFT-BPM.

The results of a numerical study and
experimental observations of symmetric
finite Gaussian beam diffraction by a
planar phase grating fabricated by ion-
exchange technique are displayed in Figs.
(8-a,b,c) These figures show the
comparison between experimental resuits
and theoretical analysis using FFT-BPM

of beam intensity at different interaction
lengths. We note that there is very good
agreements between experimental and
theoretical resuits,

6- Conclusions

Experimental results for a diffractions
patterns using He-Ne laser (A=0.6328pm)
of width w=20 um at different interaction
lengths and a Bragg angle of incidence for
ton-exchanged diffraction grating have
been demonstrated. The output patterns
are described as a Fourier transform for
the incident wavelength when passing
across the grating. There is a good
agreement between the theoretical analysis
using FFT-BPM and the experimental
results at the same wavelength and
conditions.

The generation of arrays of uniform
intensity spots have been obtained from
the diffraction patierns using lens and
these spots are wuseful in SEED’s
technology.
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Fig. | The "Dirac Comb"
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Fig. 2 (a) The gratings are not infinite in extent and represent this by multiplying the Dirac Comb by
a top-hat function,

(b) The result of (a) in reciprocal space is the Dirac Comb convoluted with the sinc function
which is the Fourier transform of the finite aperture.
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Fig. 3 (a) Representation for grating in real space as Dirac Comb multiplied by a top-hat
function and convoluted with a groove profile

(b) Representation for grating in reciprocal space
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(a) (b)
(1) diffraction pattern Photographs at different interaction lengths

(a) (b)
(ii) light spot photographs for above diffraction patterns
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Fig.5. (i)photographs for diffraction patierns,(ii) light spot photographs for the
diffraction Patterns and (iit) light intensities for the diffraction patierns
at ;= 1.2°, W, =20 um (a) d= 474 pm {b) d = 600 um (c) d= 850 pum
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{a)Field profile through 474pum of the grating.
(b) Qutput beam intensity of 474 um of the grating.
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Fig.8 Comparison between experimental results and theoretical
analysis using FFT-BPM of beam intensities at different

interaction lengths (a)d=474pm (b)d=600 pm (c)d=850um.



