

University of Menofia Faculty of Science

Atomic Physics (1) P133 Physics Students

Physics Department	January - 2 - 20 13	Time allowed: 2 hours
m=9.1x10 ⁻³¹ kg - e=1.6x10 ⁻¹⁹ C - c=3x10 ⁸ m/s	h=6.6x10 ⁻³⁴ Js - k=1.38x10 ⁻²³ J	$/K - \epsilon_0 = 8.85 \times 10^{-12} \text{C}^2/\text{Nm}^2 -$
I- <u>A) Complete these sent</u> a)is a hydrog	gen – like ion.	
	ectron and proton appro-	ortional to,
B) Put $()$ or (x) , and corr i) In Bohr model when n i	ect the error statements. increases vn increases.	(25 M) ()
ii) In Bohr model the mini iii) In Bohr model when n iv) The energy levels of th	increases En decreases.	
v) hυ < φ is the necessary 2- a) Show that Planck's r		electric effect to occur. ()
Wavelengths, of BB	radiation.	(20 M) elerated between a potential (20M)
classical planet mode		E according to Rutherford (30 M) hydrogen atom.

4- a) Some of the energy levels (eV) of an atom are listed below with n.

n	1	2	3	4	8
E(eV)	-16	-4	-1.8	-1	0

- Draw the energy level diagram of the atom. i-
- Find the ionization energy of that atom. ii-
- Calculate the excitation energy of the level n = 2.
- b) Calculate the wavelength of the first line in Lyman series. What is the wavelength of the series limit. (60 M)

With my best regards