Mansoura Engineering Journal,Vol.19, No.4, Dec. 1994. M.90

Turbulence Models far Numerical Simulation of Wall Turbulent Flows

H. D. Ammari and N. M, Sawzqed
Department of Mechanical Engineeriag
Mu'tah University, JORDAN

320 el bl Lusad) SlSlaall ol Y] @ ibai

cadls

Ll il Ggaand ol o ot plaas) JAa] a8 Bayad) oY glacall Gy Gl iy (i
Las Nlaiady el ASH ke olhl¥) gl o 50 a0 a8y g laall ol ly sl
by et k—e lobiY) £isad g aadiud (Sl faal eNslee o cy ) Al lipadd culisig
Silshe ol oy Aabna) Adba b cdlpatly faal o Lok Lo 3l e el 3 g g pe
el g 3ad Gl e ) gl g (B ALl L kee plgas de dlbally paldid
Al o g ihall e K-e ol W pigad ol s By Lt Glaadl e G5 6 AW
pi bada jilpl; by cid keg @ ilad lady s gedal) dladiod 3 alaiiy Ao et g0 Ao i)
Al A0 L ey Ll ke Ul s Lase

Abstract

Many turbulence models have been invalidated by the complex strucrure of wall turbulent flows
that exhibit separation, swirl or low-Reynolds number effects. This paper, introduces some of the
various attempts that have been made to mode! turbulence in an endeavour 10 improve numerical
predictions of wall wrbuleat flows. Emphasis is given 1o the k-8 model of urbulence which is the most
extensively used and accepted model today. Furthermore, the inprovements made to the wall funclions

that are coupled with the standard k- model, and the nonisotropic effects taken on the eddy viscosily
near walls have been discussed, and the various modifications applied to the k-2 model that refer 1o low-
Reynolds number effects revicwed. In addition, the range of applicability of some of the other models

having importance to wall shear flows has been pointed out. The wall functions in conjunction with the
standard k-ge model provide computational expediency and economy, while the low-Reynolds number
k-g forms numerically reproduce wall wrbulent flows more closely.

Iatroduction

Numerical simulation of physical processes has been gaining in importance recently as
systematic investigations are usually expensive and lime consuming under realistic conditions. By
numerical simulation new model concepts and parameters are varied speedily, and comprehensive
information is oblained at little cost in time and money. Unfortunaiely, most of (he flow phenomena
of importance to engineers involve turbulence, the mechenism of which has an extremely complicated
nature, and is 1time and space dependent. Numerical predictions may not characterize the local state of
wrbulent flows completely, however they are practically needed for engineers 1o be able 1o predict the
behaviour of such flows quantitatively.

Research workers have been actively engaged in numerical predictions of the subject of
lurbulence for more than four decades. In these decades engineers leamed to predict faminar flows.
However the desire to extend to turbulent flows is fulfilled to a considerable exient by inventing
turbulence models. These cousist of sets of differential equations, and associated alyebraic ones and
constants, the solutions of which simulate closely the averaged character of reai turbulent flows. These
maodels may consist of zero {an algebraic form of 1he eddy viscosity), one, two, three transport equations
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or more. Besides the Prandtl mixing-length modei, Baldwin and Lomax [1] proposed an algebraic eddy
viscosity model that has a wide variety of applications. The one equation model was first proposed by
Prandtt [2], who employed the specific turbulence energy, k, while the length scale representing the
macroscale of turbulence, |, was taken as proportional to the distance from the wall. Saffman [3]
formulated a two-equation model, the differential equations of which were for two properties of
turbulence, k, and the specific dissipation rate, . Harlow and Nakayama (4] proposed the first form of
the k-¢ model where ¢ is the dissipation rate of turbulence energy. A form of the k- model for low
Reynclds number terms was first developed by Jones and Launder [5]. Rotta [6] solved simultaneously

three differential equations, a shear stress, 1, one and the equations for k and for kl product. Models
of more than three equations such as that of Daly and Harlow {[7] in which k was replaced by the three

specific energies w’?, u'/, and u’’, had very little use has been made of them. Other workers applied
the various models to some physical processes of turbulent nature, such as Miller and Crawford [8] who
empioyed the Prandtl mixing-length concept, Boyle [9] used a modified Baldwin and Lomax eddy
viscosity model, Gibson and Spalding [10] used the k-© model, Rodi and Spalding {117 used the k-k!
model, Iacovides and Launder [12] used the standard k- model, whereas Rodi and Scheuerer [13 ],
Schénung and Rodi [14] and Tafti and Yavuzkurt [15] employed the low-Reynolds number k-g version.

The models with more than two transport equations have not yet been thoroughly tested due to

their costly operation on computers. The two-equation models of turbulence are well established and

there is a considerable amount of evidence in support for them. However, the k-8 model is preferred
to the other fwo-equation models which incorporate a length scale formulation besides the turbulent

kinetic energy, since the length scale relation must be adapted to the particular flow being computed,

which is a major disadvantage {16]. Furthermore, the k-g turbulence model is the most widely used and
accepted two-equation model of turbulence today. [t seems appropriate, therefore, to present in this work

a more detailed description of the aspects of the k- model having importance for flows adjacent to solid
walls in addition to pointing out the deficiencies and strengths of some of the other models.

Classification of Turbulence Models

Turbulence models generally fall in two main categories:
- Eddy viscosity models, and
- Reynolds stress models.

Classification of the turbulence models is given by Reynolds [17]. In general, the models can
be clasgsified as follows:

iy Zero-equation or algebraic eddy viscosity model. The model employs an algebraic form of
the eddy viscosity which is based on the law of the wall or mixing length concept. The model is valid
for isotropic two-dimensional flows, and its application to turbulent flows [1, 18, 19] had indicated the
following conclusions:

- The model is adequate for two-dimensional compressible flows with mild pressure gradients,

and can be suitable for three-dimensional boundary layers with smail cross flows.

- The model is not suitable for complex shear flows, ie. for flows with separation, curvature,

and rotation.

i) One-equation model. The model employs an additional partial differential equation relating
the kinetic energy of turbulence. The model is suitable to simple turbulent flows as those of the eddy
viscosity models [17, 20]. However, Johnson and King [21] attempted to revive the model for complex
flows to predict the two-dimensional separated flows and high-speed flows. The prediction of two-
dimensional separated flows in a diffuser [21], shown in Fig. I, indicates better mean velocity profile
prediction than that of the algebraic eddy viscosity model.

iil) Two-equation model. The model employs two partial differential equations describing bwo
properties of turbulence, k and ¢, or k and ©. The k-w model has only been used by a limited number
of researchers [23, 24] compared to the extensively used k-g one [16, 18, 19, 25, 26, etc.]. The k-
model is much superior to the algebraic eddy viscosity or one-equation model in mildly complex flows.
A good example of this is the prediction of the flow in a wing/body junction [27]. When a no-slip
boundary condition was used, the significantly better predictions of the streamwise velocity by the k-g
model are shown in Fig. 2.
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Based on the results extracted from the various references on the standard k- model {without
modifications) and k- model predictions, one may conclude the following:
- The model is adequate for attached two-dimensional boundary layer flows, two-dimensional

flows with pressure gradients, and threc-dimensional flows with very mild cross flows.

- The model is inadequate for separaled flows, three-dimensional flows with significant cross

Nows and swirl, and complex {lows (flows with rotation, curvature, etc.).

[t seemns that the two-equation models without modifications fail 1o capture many of the features
associated with complex flows. Several attempts, therefore, have been made 10 modify 1the models to
extend their range of validity to complex flow situations [5, 29, 30, etc.].

iv) Three-equation model or more (Reynolds stress model). The model employs three partial
differential equations utilizing the k-& model equations along with a Reynolds stress uﬂlu—’]| equation, or
several partial differential equations for the components of the turbulence stresses uT,tﬁ This is one of
the most complex models in use today. The model is under extensive development and is used in
complen flow situations [31-35), e.g., three-dimensional flows, flows with curvaiure and rotation, and
blowing and suction. This model is essential if details of the turbulence as well as accurate flow
prediction are nceded. [luwever, numerical commputation involving this model is expensive.

Generally, the zero-, and one-equation models are still used in practical engineering applications

involving simple shear flows. The two-equation model, the k-€ one in particular, is employed when
more accuracy and additional details on turbulence guantities are needed. For more accurate predictions

of the complex flowfield, one would resort to the complicated Reynolds stress transport equation, bu!
this wouid be an (he expense of costly computer time and storage and even beyond the capability of
preseut-day computees when the solution of three-dimensional flows is sought.

The advautages and simplicity of the k-¢ model (as compared to the Reynolds stress model),
however, should not be overlooked, and it seems that the k-e model is the best compromise at the
present lime belween acceptable computer outlay and accuracy of the simulation of the turbulent flow
phenomena.

k-¢ Model of Turbulence

The k-g model of turbulence describes the generation, transport and dissipation of the turbulent
velocity fluctuations (- pu’w’;) the additional shear stresses, and (- pu’,T°) the turbulent heat fluxes. The
model utilizes the eddy viscosity concept that relates the turbulent stress to the mean rate of strain aud
involves 1wo parameters, the wrbulence kinetic energy k, and its dissipation rate €. '
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( According to the k-¢ model the turbulent stresses may be expressed in Cartesian tensor notations
16} as:
. pu__'hU';=U« [ du + By, ] 208, k
o x,

where, p = the fluid density,
&, = the Kronecker delta,
L, = the jsotropic eddy (turbulent) viscosity,
{23k = can be thought of as the additional pressure resulting from turbulence [36].

The turbuient heat fluxes are similarly expressed as:

-puwi T =y, aT
Pr, &%

in which Pr, is the turbulent Prandtl number.
The eddy viscosity introduced above is related to the turbulent kinetic energy k and to its rate
of dissipation £ through the Kolmogorov-Prandtl relation as:

m=pC,vkL =pC, k¥ (D

where L, = k¥¥/¢, eddy length scale, and
C,, = 0.09, empirical constant [16].
The governing transport equations for the k-g model of turbuience may be written in tensor
notation [37] as:

Bk+udk =9 [[v+w]dk | -wu;dy-e+D D
I 8x; B o, | & o,

%e+ude =0 ["n*z. G | -Cufewa du-Cofi@+E ... (3)
& O o o, | &, ko o k

where, v, and v, are the laminar and turbulent kinematic viscosities respectively, the empirical constants
take these values as recommended in [16]; C,=1.44 , C,=1.92 , 6,=1.0, ¢,=1.3, and f, and f, are
functions, and D and F are extra terms all included for the purpose of improviog predictions in the wall
region, or for computational expediency.

These equations are a general form of the standard high-Reynolds number form given by
Launder and Spalding [16). In the standard k-g form viscous diffusions in equations (2) and (3} are
neglected, the functions f, and f, are both assumed to be identically unity, and the extra terms D and
F are ignored.

The semi-empirical transport equations for the standard k-€ model (high-Reynolds number form)
as given by [16] are:

udk =8 &ﬂ]ﬂ“&[@ﬂ-ﬁ@zg]a_ura N C))
o pox; oy ax) p Loy &x) O

ude = 3 (wde]+Caen [8u+dy) du - Cog’ o (5)
S oo, o o) ke 1o o) b b

The high-Reynolds number form of the k-¢ model has been applied to predict a wide variety
of flows; simple flows, boundary layers, etc.. It is worth noting, however, that the standard k-& suffers
from the following simplifying assumptions:
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i) The k-g8 model adopts an isotropic turbulent viscosity, i.e. it assumes the mean velocity
fluctuations to be of equal magnitude in all three directions of space. Although this simplification is
never encountered in reality, this model generally gives a good and satisfactory predictions of turbulence
properties values in simple flow and mildly complex flow situations.

ii) In the near wall region the model overestimates the generation of turbulence k [38].
Additional destruction terms in the k-transport equation near the wall region are therefore required to
yield reasonable predictions to match available experimental data.

i1i) The model is valid only for high-Reynolds number fiows, i.e. fully mrbulent flows where
viscous diffusions are neglected. However, for flows close to walls, there are always viscous sublayers
where the viscous effects predominate over the turbulent ones, this model is then used in conjunction
with the empirical wall functions.

Wall-Function Treatment

In the standard k-e model, viscous diffusions are neglected and empirical wall functions are used
to bridge the viscous sublayer. This is accomplished by relating the velocity components at the first grid
node outside this layer to the wall shear stress via the logarithmic law of the wall. A uniform shecar
stress prevails in this viscous layer, and generaticn and dissipation of energy are in balance there via
the assumption that the turbulence is in a state of equilibrium.

Standard Wall Functions
The standard wall-function for turbulent flows [16] is, namely, the logarithmic law,

C; = [k, / In(E Re C*H], for Re > 132.5 (3]

C,='1/Re, otherwise.
where C; is the skin-friction factor (=t1,/pu®, where t, is the wall shear stress and u is the velocity
parallel to the wall), k, is the Von Karman constant, taken to be 0.435, and E is the smooth-wall valug
of 9.0. The Reynolds number, Re (=uy/v)), is based on the resultant velocity parallel to the wall, on the
distance from the wall to the grid node, y, and on the laminar kinematic viscosity, v,. The limit of Re
of 132.5 is that at which the laminar and turbulent wall-functions intersect,. The standard laminar wall-
function is that of the Blasius law, C, = 0.009/Re"*.

The Stanton number, St, is given by the empirical law of Jayatillika [39],

St=C;/ [Pr{l + P, C/'), for Re > 132.5 )

where, P is the smooth-wall sublayer resistance function, a semi-empirical formula given by [16],
P, = 9(Pr/Pr-1)(Pr/P0)"*
Pr and Pr, are the viscous and wrbulent Prandtl number respectively.
For Re < 132.5, St is simply = C,/ Pr.
The heat flux at the wall, q,, is then deduced from,

q.=Stpu(h,-h)

where h, is the enthalpy at the grid node in question, and h,, is the enthalpy corresponding to the
prescribed wall temperature.

When local equilibrium conditions prevail in the near-wall layer, the near-wall grid node values
of k and € are fixed to the f~llowing empirical correlations via the incorporated logarithmic-law option
applicable to smooth walls,

k,=102/03, and (®
£ =02/ (k, ¥) = 0.09% k27 / (x, ¥) O

where u, is the friction velocity (=(./p)"?=uC,"?).
The standard wall functions, however, suffer from two deficiencies:
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i} they are restricted to smooth walls, but rough walls may be important as in heat exchangers
where the heat transfer surfaces are intentionally roughened in order to increase the heat transfer rate,
and

ii) the Stanton number is calculated via a friction factor manipulation. This treatment was found
to be appropriate for boundary-layer type flows where the near-wall layer is in local equilibrium. For
flows with recirculation (as, for example, at the reattachment point at the downstream end of the
recirculation zone engendered by a sudden enlargement of a pipe diameter), the predicted Stanton
number there was found to be negligible. Measurements, however, have indicated that the Stanton
number is actually at maximum at the reattachment point. This deficiency in the standard wall functions
is due to the fact that in regions where the flow separates from the wall the shear stress and hence
friction velocity is zero. Since the computed Stanton number was directly proportional to the friction
velocity the calculations resuited in an incorrectly predicted zero heat flux and Stanton number.

To overcome the aforementioned deficiercies in the standard wall functions, a more adequate
wall-funetion treatment is therefore needed. Launder and spalding [16] proposed a wali-function method
which can be applied to rough walls as well as smooth walls in which pressure gradient phenomena can
be accounted for, and improves the predictions of heat transfer at reattachment points. This method is
called the generalized wall functions,

Generalised Wall Functigns

The generalised wall functions adopt the method of Launder and Spalding [16], the main feature
of which is based on a modified log-law that uses the wrbulent kinetic energy as the characteristic
velocity scale, rather than the friction velocity.

Adoption of the practices in [16] leads to the prediction of finite values of k and of wall heat
flux at a reattachment point.

The standard log-law of the wall for C; is generalised by expressing u, in terms of a velocity
scale cakculated from the local k, thereby finite fluxes are predicted, even where the fluid velocity is
zero.

The C, log-law, eg. (6), can be written as,
C, =k, C / In(E Re C,7)

since C/%=ufu, and u=Re v/y it follows,
Cr=k (ufu) / In(E u, y/v)

and since u=0.3"%k'? from the near-wall cell valus of k, eq. {8), substitution for u, gives the generalised
log-lasv of the wali,

Cr=%, 03" / [uIn(E 0.3 k" y / v)]

Substitution for C,'* and u, in the Stanton number formula, eq. (7), gives the generalised form
of St,

St=C,/ [Pr(l +P_ C,u/037 k"))

The value of k at the near-wall grid cells is not fixed in this option, and is calculated from its
regular transport «quation. However, in the source term for k {eq. 4), the dissipation rate for the near-
wall cells is fixed to,

£ =009 K" In(E 0.3 k" y/v)/(2k, ¥)

When the turbulence is in local equilibrium, away from separated regions, the above expression
recovers the near-wall empirical correlation of k in the standard wall functions.
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The wall roughness is allowed for by using Jayatillika [39] empirical formulae for E, which
expresses E as functions of the roughness Reynolds number, Re, defined as:

Re, =u, e fv,

in which e is the absolute roughness height.
The formulae for E are as follows:

when Re, < 3.7, E = the smooth wall value of 9.0;
when 3.7 <Re, < 100, E = 1/[a(Re,/29.7)* + (1-a)/81]*;
and when Re, > 100, E =297/Re,;

where, 2 = (1+22C-3X%); and

X =10.02248 (100-Re YRe ¢ .

Allowance for rough walls in the calculation of Stanton number is accounted for by replacing
the sublayer resistance function for smooth walls P by P, an empiricel formula appropriate to rough
walls (39], in which

P =3.15 PIOS(I/E - 1/9)° + P_(E/9.0)°¢

The effect of introducing the generalized wall functions in place of the standard wall functions
is demonstrated by Rosten and Worrell [40]. Their predictious for a flow with addition of keat transfer
over a backward-facing step in a channel bounded by walls are given in Fig. 3. The superiority of the
generalized. wall functions to the standard wall functions is shown in the figure, for the peaks in k and

£ with the improvement by the generalized wall functions are clearly visible at the reattachment point.
A significant increase in the heat flux at the reattachunent point can also be noticed. Elsewhere, the flow

properties are littie affected by the improvement to the wall functions.

Wall functions have been widely used since they economize computer time and storage.
However, Nagano and Hishida [41] cited that the Evaluyation Committee at the 1980-1981 Stanford
Conference on Complex Turbulent Flows pointed out that wall functions are not wel! established in
many situations, and thus the methods which include integraticn right up to the wall are better than
those assuming the wall functions. This is because the low-Reynolds number models are valid
throughout the fully turbulent, semilaminar and laminar regions. But, the incorporation of low-Reynolds
number terms for the calculation to be carried out right up to the solid wall increases the computing
time (by at least a factor of three [42]) due to the fine mesh required 1o resolve the immediate near-wall
region adequately.

An improvement in predictions of turbulent wall flows behaviour may be attained by
considering a nonisotropic eddy viscosity in the standard k-g turbulance model.

Nonisotropic Form_of the k-g Model
_The standard k-g model adopts an isotropic turbulent viscosity. But, in flows with swirl, and in
three-dimensional flows generally a more adequate level of viscosity for each active stress component

is needed to include non-isotropic effects. For instance, in a flat- plate boundary layer, the normal and
lateral stresses are approximately equal near the outer edge of the layer. However, as the wall is
approached, the lateral stress rises more steeply than the normal stress in the fully turbulent region.
Therefore, the eddy diffusivity in the lateral direction would be several times greater than that in the
normal direction close to the wall, but that the diffusivities should become equal as the outer edge of
the boundary layer is approached. This in tum suggests that a coefficient £, should be employed to
account for the anisotropy effects on the eddy viscosity. Bergeles et al [42] derived a relation for f,
depending on the distance from the wall. The relation was obtained from empirical data and represents
a linear decay of the anisotropy from the wall to the edge of the boundary layer, and accordingly, the
eddy viscosity and diffusivity for the turbulent transport in the lateral direction is increased over that
in the normal direction in the boundary-layer region. They (42] have adopted the following simple fit
to empirical data:
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By=m=pC,K/e
p!,l=“‘|fv

where f, = (1 + 3.5(1 - y/A)) when y<A
=i when y>A

in which A is the local boundary-layer thickness.

Using this nonisotropic k-g viscosity model, Bergeles et al [42] predicted in almost perfect
agreement with experimental data [43] the film cooling effectiveness for a film injection through a
single hole into a free stream as shown in Fig. 4a, whereas Fig. 4b shows the better predictions of
effectiveness trends by the nonisotropic k-€ viscosity model.
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Bergles et al [44] employed somewhat a similar form for the anisotropy coefficient f,,

f,=35-25y/A wheny<A
= | when y > A

for the approximation of the stresses across the boundary layer. Demuren et al [45] employed the
Bergeles et al [42] nonisotropic eddy-viscosity relation for the three-dimensional film-cooling injection
over a flat surface, and have shown a fiirly pood agreement of the predictions of velocity and
temperature distributions with measurements. However, discrepancies were found regarding the film
cooling effectiveness, in purticular behind the injection where a very complex flow field was
established. If disngreements are found between measurements and predictions, it may be difficult to
judge whether the weakness of the method lies in the wall function formulae or in the basic model
equations. Then it may be desirable 1o consider using an appropriate improved k-g turbulence model in
whieh low-Reynolds number form is used that allows caleulations right up to the solid wall.
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Low-Reynolds Number k-¢ Model of Turbulence

All of the two-equation models of tuibulence which are pertinent to low-Reynolds aumber
phenomena, equations (2) and (3), are mainly dependent upon the modeling of the eddy viscosity p,
and the incorporation of extra terms to improve near-wall behaviour, The influence of , is due to the
predominant effect of molecular viscosity on the flow structures in the immediate neighborhood of 1he
wall, and the influence of wall proximity is due to the preferential damping of velocity fluctuations in
the direction acrmal to the wall. Models, therefore have been proposed to include the influence of 1he
molecular viscosity and wall proximity. In all of the proposed models, f, f, f, and the extra terms D
and F are either a function of one, or two of the following parameters, the turbulence Reynolds number
R(= k¥ve =~ p/p), the dimensionless distance R,(= vky/v,) and the dimensionless distance (local
Reynolds number) R,(=u y/v, = y").

Development of the Function f, .

The production of k depends upon p, (see equation (4)), therefore correct medelling of p, is
important in obtaining correct turbulence values near the wall. This implies that the modification of the
eddy viscosity is achieved by the multiplication of the Kolmogorov-Prandtl relation, equation (1), by
a damping function f, that expresses viscous effects on the stress - pu”y’, so that, p, = pC,f ke, The
function f, should account for the two separate influences mentioned above. Hence, it shoula be
consistent with the physical argument that simulates the influence of the molecular viscosity near the
wall, and approaches to unity in the fully turbulent region,

The proposed function f by Jones and Launder (5], Hoffman (29] and Hassid and Poreh [46},
given in Table 1, are apparantly a unique function of turbulence Reynelds number R, and thus the
influence of the presence of a wall on v, is not taken into consideration directly. On the other hand, the
formula £, by Chien [30] and Nagano and Highida [41] take into account the effect of wall pooximity
directly via the dimensionless distance (local Reynods number), R,. The effect of R, is not included in
f, via the assumption that v, is already modelled as a function of R,. The £ formula of Lam and
Bremhorst [38], however, is dependent upon both the turbulence Reynolds number R, and the

dimensionless disiance from the wall R,. Thus, the two influences are considered directly in their
formulation.

Table (1) Constants and functions in the k- models [41].
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Development of the Functions f,, £, D and F

The high-Reynolds k-g form suggests 1hat f, is approximaiely unily remote from the wall. Neac
the wall it is found that f, assumes larger values in order o increase the predicled dissipation rate
thereby reducing the predicted wirbulence level to match available experimental data. Otherwise,
additional destruction teris would be required in the k-transport-equation to yield reasonable predictions
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as have been proposed by {5, 29, 30, 41, 46] in their low-Reynolds number forms of the k- model.
Lam and Bremhorst [38], however, didn’t include additional terms in either of the k and & equations,
instead they proposed a formula for f, being a function of f, only, see Table 1, so that when the
turbulence level is high, f, and hence f, will be approximately unity. Close to a wall, f, will be smali
but finite and f, will become large.

As for £, all of the low Reynolds number forms of the k-e model given in Table | employ a
formula for f, dependent upon R,, except Nagano and Hishida [41] where f, is dependent upon R,, such
that as R, {or R)) tends to zero at a wall f, must tend to zero.

In most of the low-Re forms, € which is finite at the wall, is made zero for computational
expediency [5]. Since this makes the k equation inconsistent at the wall, the term D is added in the k
equation. whereas, the extra term F is added for the necessity of improving near-wall behaviour [41].

To assess the performance of these models, the comparison made by [41] of the predictions of

the major low Reynolds number k-g¢ models with measurements of basic test cases covering wall flows
are presented. [n Fig. 5, predictions and experimental data [(47-49] are compared for mean velocity

profiles in a pipe. Fig. 6 comparison of predictions with measurements (50] are made for a

relaminarizing turbulent boundary layer flow. It seems that in general the low-Reynolds number k-¢
models reproduce the physical phenomena in such a good and satisfactory manner, although, not exact.

0.006
10
Predictions C
. :ﬂ'“[‘;‘l’”’ u/u, =25 In(y'ys.S, y
ufu, —_ 3] “ﬁt—.’:f)“ 0.004 |
0 — 41 AT
[ - (30}
ol : 0002 -
. B {41}
wfut o 150]
° BT Y G %3 o 00 o1 0
-0 -0.1 . ¥ .
¥ X (m) 2
Fig. 5 Comparisen of models for mean velocity Fig. 6 Comparison of models for relaminarizing
profiles in a pipe. flow.

Concluding Remarks

It is evident from this review that if interest lies with predicting wall turbulent flows and
computational economy, the standard k-g model in conjunction with the standard wall functions is
adequate but limited to translate simple boundary layer flows. However, the k-e model coupled with the
generalized wall functions provide fairly adequate predictions of mildly complex wall turbulent
flowfields. Further improvement could be obtained by taking into account the nonisotropic effects on
the eddy viscosity near walls. But even with this consideration, predictions were only slightly improved
for complex wall turbulent flows.

The various low-Reynolds number k-¢ forms have shown considerable improvements in
reproducing wall effects that are in good agreement with experimental data. But this is achieved at the
cost of computer time and storage which is justifiable if greater accuracy is desired.

It is recommencled that the Reynolds stress models are essential when detailed and more
accurate predictions of the complex flow problems are desired. Because of the recent big and rapid
advances in today’s computer technalogy, the Reynolds stress models will and have become more
widely used in application 1o complex flow situations.
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Nomenclature
C, skin-friction factor
cll
C:I
Ca empirical constants in k-€ turbulence model
Gy
at
D extra termm in k-equation, or injection hole diameter
E constant for the law of the wall
& wall absolute roughness height
F extra term in s-equation
f, f; functions in low Reynolds number k- turbulence model
£, coefficient accounting for anistropy effects on the eddy viscosity
£, damping function on the eddy viscosity
h specific enthalpy
k kinetic energy of turbulence
k, Von Karman constant
L, eddy length scale
P rough wall empirical formula
P, smooth-wall sublayer resistance function
Pr Prandtl number
q heat flux
Re Reynolds number
R,  dimensionless distance =v'ky/v,
R, turbulence Reynolds number = k*/vie
R, dimensionless distance = u y/v, = y*
St Stanton number
T temperature
t time
u velocity compenent in x-direction
u’ instantaneous velocity fluctuations about the mean
u, friction velocity
X streamwise distance along the wall from an arbitrary reference point
¥ vertical distance from wall
y* dimensioniess distance = u yfv,
z lateral distance from an arbitrary reference point
X, X%, Cartesian coordinates
A thickness of boundary layer
£ dissipation rate of turbulence
o viscosity
v kinematic viscosity
o] density
T shear stress
[ specific dissipation rate of turbulence
Subseript
1 laminar
P grid cell node
r roughness
t turbujent
w wali
@ mainstream

M.100
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