| Mansoura University |
| :--- | :--- | :--- |
| Faculty of Engineering |
| Dept. of Power Mech. Eng. |
| Course Title: Automatic Control. |
| Course Code: |\quad| $4^{\text {th }}$ Mechanical Eng. |
| :--- |
| May 2013 |
| Exam Type: Final |
| Time: 3 Hours |
| Full Mark: 90 |

Question 2

[20 Marks]

A)For subsonic flow of air through a restriction, the mass rte of flow is $\mathrm{M}=1.05 \mathrm{~A}[(\mathrm{P} 1-\mathrm{P} 2) \mathrm{P} 2 / \mathrm{T}]^{0.5}$. The area A of the restriction and temperature T are constant. Determine the linear approximation for m due to a change $\mathrm{p} 1-\mathrm{p} 2$ in the pressure drop across the restriction and due to a change p 2 in the downstream pressure. Express this variation m in terms of the reference value Mi.
B)For the mechanical system shown in figure
i-Draw the grounded chi diagram
ii) determine the equation relating f with x and f with y.

Question 3

[20 Marks]

A system for controlling flow is shown in figure. Increasing the desired flow setting increases the compression of spring K1, which causes x and the position e of the balanced valve to move up. This in turns causes the flow valve to move down, which increases the flow. The amount of flow out is measured by a venture-type flow meter, so that the pressure drop P1-P2 is a function of Go. The diaphragm prevents leakage from the high pressure P1 to the low pressuireP2, but it permits motion, just as a piston would. The effective area of the diaphragm is Ad. The flow Qo is seen to be a function of the flow valve opening Y and the supply pressure Ps. Determine the overall block diagram representation for this system.

Question 4 [16 Marks]

A)The steady state operating curves for a unity feed back system ($\mathrm{K}_{\mathrm{H}}=1$) are shown in figure. Construct the block diagram that described the steady state operation of this system. (9 Marks) B)The block diagram for an industrial temperature control is shown in figure. At the reference operating point, $\mathrm{Vi}=\mathrm{Ci}=100, \mathrm{Mi}=40$, and $\mathrm{Ui}=20 . \mathrm{The} \mathrm{Ui}=20$ load line is shown in the figure. Insert values on the C axis of the figure where the question marks appear such that it has the correct slope. Draw the $\mathrm{U}=30$ load line. Determine the value of K 1 such that when $\mathrm{V}=\mathrm{Vi}$ the change of controlled variable c will be 1 unit when U changes from 20 to 30. Determine A such that the coefficient of v term in the equation for steady state operation is unity.
(7 marks)

Question 5 [16 Marks]

Determine the solution of the following differential equation where $f(t)=2 \mathrm{e}^{-t}$ and all initial conditions are zero $\quad\left(\mathbb{D}^{3}+4 \mathbb{D}^{2}+5 \mathbb{D}+2\right) y(t)=f(t)$

Laplace transform pairs		Laplace transform properties	
$f(t)$	$F(s)$	Time function	Laplace transform
$\delta(t)$	1	$k f(t)$	$k F(s)$
$u(t)$	1	$f_{1}(t) \pm f_{2}(t)$	$F_{1}(s) \pm F_{2}(s)$
		$f^{\prime}(t)$	$s F(s)-f(0)$
t	$\frac{1}{s^{2}}$	$f^{\prime \prime}(t)$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$
$e^{a t}$	$\frac{1}{s-a}$	$f^{n}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{n-1}(0)$
		$f^{(-1)}(t)$	$\frac{F(s)}{s}+\frac{f^{(-1)}(0)}{s}$
t^{n}	$\frac{n!}{s^{n+1}}$		
		$f^{(-n)}(t)$	$\frac{F(s)}{s^{n}}+\frac{f^{(-1)}(0)}{s^{n}}+\cdots+\frac{f^{(-n)}(0)}{s}$
$t^{\text {a }}$ at	$n!$		
$t^{n}{ }^{a t}$	$\frac{\overline{(s-a)^{n+1}}}{\omega}$	$f(a t)$	$\frac{1}{a} F\left(\frac{S}{a}\right)$
$\sin \omega t$	$\overline{s^{2}+\omega^{2}}$	$e^{a t} f(t)$	$F(s-a)$
$\cos \omega t$	$\frac{s}{s^{2}+\omega^{2}}$	$t^{n} f(t)$	$(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)$
$e^{a t} \sin \omega t$	$\frac{\omega}{(s-a)^{2}+\omega^{2}}$	$f(\tau)=f\left(t-t_{0}\right)$	$e^{-t_{0} s} F(s)$
$e^{a t} \cos \omega t$	$\frac{s-a}{(s-a)^{2}+\omega^{2}}$	$\int_{0}^{t} f(\lambda) g(t-\lambda) d \lambda$	$F(s) G(s)$

