EL-MANSOURA UNIVERSITY
FACULTY OF ENGINEERING
DEPARTMENT OF PRODUCTION \& DESIGN
M. SC. COURSE EXAM.

Sept. 2013
ELASTICITY \& PLASTICITY
TIME ALLOWED: 3 HOURS
\{ OPEN BOOKS \}

## ATTEMPT ALL PROBLEMS:

## PROBLEM \#1:

The stress function :

$$
\Phi=\left(S / 4 \dot{c}^{2}\right)\left[c^{2} x y-c x y^{2}-x y^{3}+c l y^{2}+l y^{3}\right]
$$

is proposed as giving the solution for a cantilever ( $y= \pm \mathrm{c}, 0<\mathrm{x}<\boldsymbol{\ell}$ ) loaded by uniform shear along the lower edge, the upper edge and the end $x=\ell$ being free from load. In what respects is this solution imperfect? Compare the expressions for the stresses with those obtainable from elementary tension and bending formulas.

## PROBLEM H2:

The stress function:

$$
\Phi=\left(\sigma_{0} / 2\right)\left[\left(1 / 2 r^{2}-a^{2} \ln r\right)+\left(-1 / 2 r^{2}-1 / 2\left(a^{4} / 2 r^{2}\right)+a^{2}\right) \cos 2 \theta\right]
$$

is proposed as giving the solution for a large thin plate containing a small circular hole of radius (a) and subjected to simple tension as shown in Fig.I.
(a) Determine the stress field $\left(\sigma_{t r}, \sigma_{00}, \tau_{10}\right)$ in the plate,
(b) Calculate the stress concentration factor at the hole.


## PROBLEM \#3:

Consider a material which undergoes linear strain hardening. Its true stress- true strain curve in tension is given by:

$$
\sigma=\mathrm{Y}+1.35 \mathrm{Y}_{\epsilon}
$$

The stress - strain"curve does not depend on strain rate.
(a) At what value of true strain will necking start?
(b) Suppose a stepped tensile bar (Fig.2) is made from this material. The initial cross-sectional area of region 1 is 0.990 times the initial cross-sectional area of region 2 . What is the strain in region 2 when the strain in region 1 reaches 0.200 ?


Fig. 2

## PROBLEM \#4:

A steel sheet was deformed plastically. After unloading, it was found that the principal "engineering" strains in the plane of the sheet were $e_{1}=0.172$ and $\mathrm{e}_{2}=-0.0431$. Assume that the ratio of stresses, $\alpha=\sigma_{2} / \sigma_{1}$, was held constant during unloading and that there was no stress normal to the sheet surface. Also, assume the Von Mises criterion.
(a) Find the ratio, $\alpha=\sigma_{2} / \sigma_{1}$, that prevailed during loading.
(b) Find the ratio, $\bar{\sigma} / \sigma_{1}$, that prevailed during loading.
(c) Find the effective strain.
(d) Assume that the tensile stress - strain curve for this steel can be approximated by $\sigma=650 €^{0.22}$ (MPa). Find the value of $\sigma_{1}$ just before unloading.

## PROBLEM \#5:

Write technical notes on each of the following:
(a) Stress invariants.
(b) Bauschinger effect.
(c) Airy stress function.
(d) Slab method for solving plasticity problems.

