Menoufiya University	Dep.: Basic Science and Eng.
Faculty of Engineering	Introduction to O.D.E.
Code:BES506	11\1\2014
Time: 3 hours	Marks:100

Answer all the following questions:

1) Find the general solution of the O.D.E.

$$y^{\setminus\setminus} + y^{\setminus} = 0$$

Also find the solution that satisfies the initial conditions:

$$y(0) = 0$$
, $y(0) = 1$, $y(0) = 2$

2) Find the total solution of the nonhomogeneous D.E.:

$$y^{\setminus\setminus} - 3y^{\setminus} + 3y^{\setminus} - y = 4e^t$$

3) Find the series solution of the differential equation:

$$y^{\setminus \setminus} + y = 0$$
 $-\infty < x < \infty$

4) Solve the system of first order linear D.E.:

$$\frac{dI}{dt} = -I - v$$

$$\frac{dv}{dt} = 2I - v$$

5) Using Rung-Kutta method to calculate the approximate value of the initial value problem:

$$y = 1 - t + 4y \qquad y(0) = 1$$

6) For the system of homogeneous linear D.E. with constant coefficients:

$$x^{\setminus} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} x$$

find the general solution.

With my best wishes

Dr. Elsayed Zaky