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ABSTRACT 

Many authors proposed algorithms to transform the original IP ' prob- 

lem into a Knapsack problem which may be easier to be solved by a DP' recur- 

raion (Glover [I], Kendel, and Zionts 171) . 
Other authors transformed the IP problem into a Group optimization 

problem that strongly resembles the Knapsack problem . An optimal solution 

to the transformed problem often yield an optimal solution to the original IP 
I 

problem from which it was derived (Gomory [2], Shapiro, [ll]) . 
Another approach is developed by mixing the methods of DP and the 

branch-and-bound principles . Morin and Marsten [9], has shown how branch- 

and-bound methods can be used to reduce storage and, possibly, computa- 

tional requirements in discrete dynamic programs (Jeromin, and Korner [6], 

Kovacs [a]). 

The purpose of this paper is to show the capability of utilizing Dynamic 

Programming (DP) in solving Integer Programming (IP) problems . 

'IP Integer Programming, DP Dynamic Programming. 



Solving Integer Programming. 

1. The Formulation of IP as a DP Model : 

Consider the general integer programming problem : 

(IP) : Max 

subject to 
n 

C q x j  <a,  , i = 1 , 2 ,  ... , m ,  
3 =l 

and 

x, 2 0 integers , j = 1,2,  ... , n  . 

The problem (IP) can be formulated as a dynamic programming model as fol- 

-lows: 

1. Each activity j (j = 1, 2, ..., n) may be regarded as stage (i.e. we have 

n-stage decision problem) . 

2. The level of activity y (1 0) represents the alternatives at  stage j . 

3. However, m state parameters will be needed one for each constraint (i.e. 

the state variables are of m-dimensional) . 

Let (slj , szj , ... , s,) be the states of the system a t  stage j, that is 

the amounts of resources 1, 2, ..., m allocated to stage j, j+l ,  ..., n - Also let 

f;(s~, , 32, , ... , sm,) be the optimum value of the objective function for stages 

j, j+l, ..., n . 
The corresponding dynamic programming formulation becomes : 

- 
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where i = 1, 2, ... , m , 
j = 1, 2, ... , n-1 , 

0 5 s;j 5 b, for all i, j , 
0 5 x j  5 [ s ~ ~ / u ; ~ ]  and b] denotes the largest integer _< y . 

The above recursive relationship is of the backward type . Otherwise we can 

make the same procedure by a forward recursive equation as follow : 
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where x, , j = 1 ,  2 ,  ..., n is the decision variable corresponding to stage j . This 

recursive scheme has a practical computational value only when the number m 

of state variables is small . 

To demonstrate our solution procedure, consider the following simple 

example : 

Example 1.1 : 

Max = X I  $ 3 2  

subject to 2xl +x2 < 8 
$ 1  + 2 2  < 8 

and x1  , x2 2 0 , integer . 

Define the decision variables as dl = xl and d2 = x2 and let the stages corre- 

spond to the variables x j , i = 1,2 . 
Since the problem has two constraints, there will be two state variables to search 

over . Denote these two state variables at the n& stage as c ~ ,  , ,B, , n = 1,2  

such that : 

stage 1 : 



stage 2 : 

where el = cu2 - d2 , jJ1 = - 2d2 . 

s 

Stage 1 : calculations 

Table 1.1 

d,  which yields highest stage n return 

Bn ?<-- 
f' (a,, pn) for a given d ,  
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Stage 2 : calculations 

Hence the optimal solution : 

2. An Algorithm for Solving the Knapsack Problem : 

Consider the simplest integer program, i.e., an integer program with only 

one constraint, called the Knapsack problem . We can express the Knapsack 

problem as follows : 

(Kp) : Max 

(cj 2 0 , in tegers )  

subject to 
n 

a j z j  _< b ( a, and b + we in tegers  ) 
j=1 

x, 2 0 , integer (j = 1, 2, ..., n) . 
In order t o  solve the above problem (Kp), let us define a new function 

f ( k ,  ,B) to be the maximal value of the objective function using only the &st k 



N. El-Ramly & A. El-Kassas. 

( k = 1, 2, ..., n ) items . When the weight limitation is < ( p = 0, 1, ..., N ) . 

That is The problem (IP) can be formulated as a dynamic programming model 

as follows : 

subject to  C ajxj Ci < 
i =l 

Isolating xl in (1) yields, for k = 2, ..., n and B = 0, 1, ..., N . 

,=l 
x = 0, 1, ...a P / a k ]  

k - 1  
subject to ajxs 5 < - akzk 

,=l 
x, > 0 , integer ( j  = 1, ..., k - 1). 

j=1 
xj > 0 , integers ( j  = 1, ..., k - 1). 

By definition, the problem in brackets has an optimal f (k  - 1 , j3 - ar st) . Thus, 

for k = 2, ..., n and @ = 0, 1, ..., N (2) can be rewritten as : 

To start the computations, first we have t o  find . 
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and using recursive relation (3) to find f (2, ,4), ..., f ( k ,  /I), for @ = 0 ,  1 ,  ..., N ,  

by using the initial condition f (0 ,  /3) = 0  for ,0 = 0, ..., N and f ( k ,  0 )  = 0  for 

To solve a Knapsack problem with bounded variables and an equality 

constraint we add the initial conditions f (0,O) = 0  and f ( 0 , B )  = -co for ,4 = 

1, ..., N in place of f ( 0 ,  @) = 0 . This allow us to use equation (3) directly . 

2.1. The Algorithm : 

Step 0 : (Initialization) : 

Set f (0 ,O)  = 0 ,  and f(k,O) = 0  fork = 1,  ..., n . 
If constraint of type 5 , then set f ( 0 , B )  = 0 ,  /I = 1, ..., N . 
Otherwise if constraint of type = , then set f ( 0 ,  B )  = -w, /3 = 1,  ..., N . Go to 

step 1  . 

Step 1 : 

Set k = 1  . I f  cl 5 0  then set f (l,,4) = 0 ,  otherwise set f ( 1 ,  B )  = [ ,4/al]cl  

(where xi = [ p / a l ] )  . Go to step 2 . 

Step 2 : 

Set k = k+l . For all @ < ak,  set f ( k ,  @) = f ( k  - 1,B)  . Otherwise 

X k  = 0 ,  1 ,  -.., uk 

(where uk is an upper bound for sk) . If k < n then return to step 2 . Otherwise 

go to step 3 . 
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Step 3 : 

Terminate with optimal integer solution Z = f (n, N )  . 
End (of algorithm) . 

Example 2.2 : 

Maximize 3 x1 + 5 xz + 53 + 2 4  

subject to 2 xl + 4 xz + 3 23 + 2 24 5 5, 

x1 , x2 , x3 , x4 2 0 , integers . 

Using the recu~sive equation (3) as shown in table 1 

The optimal solution is : f(4,5) = 5 with x* = 0 (N is reduced to 5 

- 2(0) = 5), x3 = 0 (N is reduced to 5 - 3(0) = 5), xz = 1 (N is reduced to 5 - 

4 

4(1) = I), and XI  = 0 . The optimal values of the variables are boxed . 
3. Solving IP Problems by DP Enumeration : 

- 0 o o o I o / .  

Greenberg (41, has proposed some integer programming methods in a 

Table 1.3. 

dynamic programming framework . In this section we shall introduce a proposed 

algorithm for the solution to the IP problem by means of DP enumeration . 
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First, we find the continous linear programming solution by relaxing the integer 

restriction on the variables . If the continuous solution is fractional, we develop 

linear congruences that the nonbasic variables must satisfy, which is added as 

constraints. 

Consider the integer programming problem : 

Find integers xj  2 0 for j = 1, 2, ..., n . 
that 

n 
minimize Z = C cjxj 

j=1 

subject to C ajjxj = bi , a = 1, 2, ..., m 
j =1 

where a,, bi , and cj are given integer constants . 
Remark : we consider the case where some or all of the variables have upper 

bounds . Thus we include the case where the xj is 0-1 . Problem (4) may be 

solved as a LP by relaxing the integer constraints to obtain the optimal canonical 

form : 
man Z=Zo+ C i ~ j x , )  

j € N B  
subject to  tg + C Z , j ~ j  = b; , a = I ,  2, ..., rn 

j € N B  

where 3 = the set of indices of the basic variables, NB = the set of indices of 

the nonbasic variables . 
The vectors a, Cj=O & j E NB) are column vectors . The components of a, are 

nonnegative . If a, is all ineger, then xj = 0 (j ~i E), XB = a. is an optimal 

solution . Otherwise if any of the x, (j E NB) are fractional then the equivalent 

Knapsack problem is : 

minimize cjz j  
jENB 

subject to b3x3 - Po mod 1 , 
jENB 

and 0 < x3 5 Ul , x j  integer, j E N B  . 
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where pj are the colmps of fractional parts of the aj from (5) . Now, to solve 

the problem (6), we form the Knapsack function : 

which may be written as the dynamic programming recursion 

where the arguments of F takes modulo 1 . The recursion in (8) may be solved 

as a simple enumeration by noticing that : 

where 

(; = min cj 
J C N B  

(20) 

Then born F(B - /3,) by replacing B by /3 - B, in ( 8 )  and we substitute the result 

for the F ( p  - B,) term on the R.H.S. of ( 8 )  . As 

F ( B - / % ) = m i n [ ~ j + F ( B  - B j  - @ I ) ]  
J 

* 

we then can produce another immediate solution, keeping the upper bounds U 

a are not violated while performing the enumeration . To solve the integer program 

(5) we stop the enurneraaton when F ( p o )  is calculated . 

3.1. The Algorithm : 

Step 1 : 

Suppose that the set of non-basic indices NB = (1 ,  2 ,  ..., m) . Then list 

the values of the program as : 
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Table 1.4. 

Go to step 2 . 

Step 2 : 

Given the list, find c, = min c j  for all unmarked columns in all sections. 

E/3, = ,&, then mark the column . Go to step 4 . Otherwise mark the column. 

Go to step 3 . 

Step 3 : 

Add a new section of columns to the list, if possible as follows : 

(i) Calculate cl = c, + cj , s 8, + p, ((mod 1) V j E N B  . 
6.c. the values cj & pj are taken from the original list in step 1) . Where 

z j < q f o r j # r  and 

r,+l+l < U, f o r j =  r 

for the section containing the newly marked column . 
(ii) Add the columns labelled by j in the new section with values ci and . 

(SJ Under the section added write the x,  values &om the section containing the 

newly marked column . Set x,  = x ,  + 1 for the section . Go to step 2 

.. 
Step 4 : 

Take as a trial solution the values of the variables found below the section 

where @, = /lo appears with x ,  increased by one . 
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If the constraints in (5) are satisfied then the solution found is the opti- 

mal integer solution to the original integer program (4) . Otherwise go t o  step 

3 .  

End (of algorithm) . 

Example 3.2 : 

Minimize 5xl + 7x2 + lox3+ 3x4 + x5 
subject to xl - 3x2 + 5x3 + x+ - 4x5 > 2 

and 0 _< x; 5 1 , x; integer , j=l, ..., 5 .  

Using the Lexic. dual simplex method to fmd the continuous solution, we have 

the equivalent problem : 

and 0 < xj cj 1 , xj integer , j=l, ..., 5.  

x, 2 0 , j=6, 7, 8. 

and develop the congruences 

Step 1 : The problem is listed in tableau TI; j3 = (3/9,6/9,3/9),  z,, = 9. 

Step 2 : r = 7 in tableau TI,  c, = 24/9. 
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Step 3 : We form tableau T2. Mark column 7 of tableau TI. 

Step 2 : r = 5 in tableau TI, c, = 4219. 

Step 3 : We-form tableau T3. Mark column 5 of tableau TI. We need 

not add a column headed by 7 in T 3  because it would duplicate the 5 column in 

T2. Also we do not add a 5 column in T3 since x5 is at its upper bound in T3. 

Step 2 : r = 7 in tableau T2, c, = 4819. 

Stev 3 : We form tableau T4. Mark column 7 of tableau T2. 

Step 2 : r = 5 in tableau T2, c, = 66/9. 

Step 3 : We form tableau T5. Mark column 5 of tableau T2. The 

solution is now possible in the 7 column in T4. We have x7 = 3, X I  = x4 = x5 = 

xs = 0 . Substitute x7 = 3 into constraint equations, we obtain xs = 0 , xs = 1 

, and xz = 1 . 
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Thus we have achived the optimal solution with objective value 9+ 7 = 

17 . Note that if xs , x3 , or x2 are not feasible, other solutions are possible; 

e.g., the 1 column of (T2), the 4 column of (T3), and others if the enumeration 

is continued . 

4. Conclusions : 

I 
In section 1, formulation the IP as a DP model is introduced . Unfor- 

tunately, the presence of multiple state variables creates major difficulty in the 

solution of DP problems from computational viewpoint . This is called the curse 

of dimensionality in DP . Thus for large problems this is not recommended as a 

general approach . 
In section 2, we presented algorithm for solving the Knapsack problem. 

For mall problems (when the numbers of variables, and the constants are rela- 

tively small) the DP approach performs well . The problem constants must be 

+ve, and integers, the variables must be bounded also . For variable xj with- 

out upper bound, we simply solve a linear program : maximize x, subject to 

the constraints of the original problem . The -ve coefficient variable x, may be 

transformed to a +ve coefficient, by settin'g x, = Uj - xj  (where Uj is the upper 

bound for the variable xi) . 
The algorithm discussed in section 3, is proposed by Greenberg [3] . 

Indeed, this is an enumerative method in a DP framework . The method can be 

used to solve the important class of problems in which the variables have upper 

values . 
From the foregoing discussion, we can deduce that, the DP technique 

is not recommended as a general approach for solving the IP problems, since it 

suffers from dimensionality problem . 
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Although, the branch-and-bound methods have the advantage of solving 

both the IP and MIP 2, however, it requires extremely large computer storage 

capacity . For problems with many variables . Thus the mixture of the branch- 

and-bound and the DP may have a double advantage . The first, is the generality 

of branch-and-bound in solving the P and MIP problems . The second, is the 

advantage of utilizing DP from computation efficiency viewpoint . For example, 

the DP technique may be used in branch and bound for computation of bounds, 

also it may be used for fathoming critera . 
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