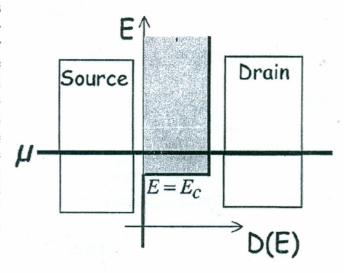
Mansoura University

Communications & Electronics Engineering Department M.Sc. 1st year: Quantum Electronics Course (Open Resources) Final Exam: Sept. 15th, 2013

(Total marks = 100) (2 pages) (Time allowed: 3 Hours)

- Q1) Define Nanotechnology and list some of its current and most promising applications (max. of two pages). (total of 10 marks)
- Q2) Define Coulomb Blockade and discuss the two conditions for observing this phenomenon (max. of two pages). (total of 10 marks)
- Q3) (total of 30 marks: a) 15 marks and b) 15 marks))
 The current-voltage (I-V) characteristics of a nanoscale device can be calculated from:

$$I = \frac{2q}{\hbar} \int dE \, D(E - U) \, \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \left[f_1(E) - f_2(E) \right]$$

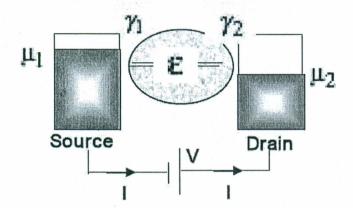

where
$$f_1(E) = \frac{1}{e^{(E-\mu_1)/kT} + 1}$$
 and $f_2(E) = \frac{1}{e^{(E-\mu_2)/kT} + 1}$

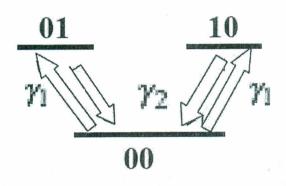
Also $U = U_L + U_0(N - N_0)$. Assume $U_0 = 0$ and the Laplace potential U_L to be a fraction α of the drain potential V_D (the source potential is assumed zero):

$$U_{L}=-\;q\;\alpha V_{D}$$
 , $\;\alpha\;$ being a constant between 0 and 1.

A channel has a density of states as shown, namely a constant nonzero value for $E \ge E_C$ and zero for $E < E_C$. Assume that equilibrium electrochemical potential μ is located above E_c as shown. Sketch the current versus drain voltage assuming that the electrostatic potential of the channel (a) remains fixed with respect to the source ($\alpha = 0$) and (b) assumes a value halfway between the source and drain potentials ($\alpha = 0.5$),

Explain your reasoning clearly.


Page 1 of 2


(Dr. Sameh Rehan)

Q4) A box has two degenerate energy levels both having energy, ε. The electron-electron interaction energy is so high that no more than one electron can be inside the box at the same time. (total of 30 marks)

One-electron picture

Multi-electron picture (state 11 excluded because it is energetically inaccessible)

- a) Use the multi-electron picture to derive the correct expression for the maximum current, $I_{max1} = f(\gamma 1, \gamma 2, q, h)$, that flows when a voltage V is applied with the polarity as shown $(\mu_1 > \mu_2)$. (15 marks)
- b) Assuming $\gamma 1 = 10 \ \gamma 2$, state $I_{max1} = f(\gamma 2, q, \hbar)$. (4 marks)
- c) If the polarity of the applied voltage is reversed ($\mu_2 > \mu_1$), state the new expression for $I_{max2} = f(\gamma_1, \gamma_2, q, \hbar)$. (5 marks)
- d) Assuming $\gamma 1 = 10 \ \gamma 2$, state $I_{max2} = f(\gamma 2, q, \hbar)$. (4 marks)
- e) Which maximum current I_{max1} or I_{max2} is bigger? (2 marks)
- Q5) The Single-Electron Box (SEB) is one of the basic Single-Electron Nano Devices (SENDs): (total of 30 marks)
 - a) Describe what is the SEB and state its two main drawbacks.

 (5 marks)
 - b) Drive the equation for the free energy of the system, Ef(n).

 (10 marks)
 - c) What is the supply voltage range, within which Coulomb blockade effects are in effect (? < Vg <?)? (5 marks)
 - d) What is the supply voltage range, within which the tunnel junction voltage oscillates between (? < Vt <?)? (5 marks)
 - e) Draw the relationship between Vt and Vg for the SEB. (5 marks)