Mansoura University 2 nd Yea		2 nd Year Production	
Faculty of Engineering	100 200)	1 st Term – 30 December, 2012	
Prod. And Mech. Design Dept.	Machine Design Final Exam	Full Marks: 100, Time: 3 Hours	

Solve all Questions. All dimensions are in mm. Assume reasonable values for any missing data.

Question1:(30 Marks)

Figure (1) shows a Motor of P=10hp, and N=1200 rpm. The motor drives Pulley P1 that transmits power to Pulley P2 through a Flat Belt. Gear G1 is mounted with P2 on the same shaft. G2 meshes with Gear G1 and transmits power to a Machine through a Flange Coupling. The combined fatigue and shock factors for torsion and bending may be taken as 1.5 and 2 respectively. It is required to design the following elements:

- 1. Details of the Flat Belt.
- Diameter of the Shaft carrying Gear 2.
- 3. Coupling, its 4 bolts and square Keys.

Element	Diameter
G1	50
G2	100
P1 and P2	150

	Steel
$ au_{ m all}$	40MPa
σ_{all}	80MPa

 $\mu = 0.15$ $\mu_c=0.1$

Question2:(30 Marks)

It is required to lift a load of 10 kN through a height of 500mm using a screw jack shown in figure (2). Design all possible details of this Jack, given that:

	Steel	Cast Iron	Bronze
$ au_{all}$	60MPa	25MPa	20Mpa
σ_{all}	100MPa	50Mpa	40MPa

Allowable Bearing Stresses of Bronze are:

With Steel	With Cast Iron
18MPa	35MPa

Figure (2)

150 150 150

Figure (1)

G2

Coupling

G1

Machine

P1

Motor

For Belt

 $\mu = 0.3$

 $\rho = 1000 \text{ kg/m}^3$

σ_{all}=3 MPa

Question3:(10 Marks)

Find the tensile force (F) that acts axially on a pressure vessel of pressure (P), mean diameter (D), length (L), and thickness (t) as shown in figure (3), and causes a maximum shear stress (τ_{max}) equals to double of the hoop stress (σ_h). i.e ($\tau_{max} = 2\sigma_h$).

Note that:

$$\tau_{max} = (((\sigma_x - \sigma_y)/2)^2 + \tau_{xy}^2)^{(0.5)}$$

Figure (3)

Question 4:(15 Marks)

Figure (4) shows a bracket fixed to a steel structure by 4 steel bolts of equal size, and carries a load of P=5kN, determine:

- The resultant force on each bolt.
- The size of the bolts.

Given that for bolt material, $\tau_{all} = 50 MPa$. Use 12=50, 11=400, and e=200.

Question5:(15 Marks)

1- The cantilevered beam shown in figure (5) is subjected to a tip force (F) varies sinusoidal between (1kN) and (5kN). The Ultimate Stress ou=300MPa. Find the values of its Factor of Fafety using the equations of:

- Gerber
- Goodman
- Soderberg
- **ASME**
- 2- Discuss in brief the different theories of failure.

Figure (5)

Good Luc med Galal