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The aim of this p p e r  is to c q  out hmsient stability analysis of an Nmachine 
power system using the drco~nposition-awcgation mrthod and considering a more 
sophisticated generator rnodel. Each of the system Kenerators is represented by the so- 
called 2-ais model il], in which the two components ElcI arid E'd of the generator 

internal voltace E' z e  considered to chanpe with time:rhis is instead of assuming the 
voltage E' , or the voltage component E',j . to be constant as usually considered. for 
simplicity, in power system stability analysis using the direct methods. 
The system network. in which the loads are represented by constant impedances. is 
reduced to the generators internal nodes. Desaibitig each generator by a fouith-order 
dynamic ntodel,and considsring uniform mechanical damping, the qs tem inathimatical 
model (the transfer 'conductnnces are included) is obtained and decomposed into (N-1) 
interconnected subsystems by using the pair-wise decon~position. A square aggegatior~ 
matrix . o f  the order OJ-1) is obtained , and stabiity of this ma& iniplies asymptotic 
stability of the system equlibri~un. 
The developed stabiity approach is applied to a 3-machine.4-bus power system example 
and an estimate For the system asymptotic stabilily domain is dttermined. A ?-phase 
short circuit fault.' with successiiil reclosurb. is asstuned near a system bus. and the 
stability computations are caned out. A rzdosure time for the faulted line is determined 
such that the system .can regain its prefault (normat) conditions. It is shown that the 
developed approach is suitable and applicable in practical and on-line stability studies of 
power ~ystems . 

" 

with the advent of large power systems came a renewed interest in the stability 

propenies of wch systems. Indeed. the tendency of a power vstem to lose s'ynchronism 
appems to be much morc prevalent for lnrgc systems thm for relatively isolated groups. 
Most stabity investigations of large power systems are based on duect simulati.on of thr 
qsiem and inteqation of the differential zquations of the system for various initial 
conditions. aninit to obsenre. if the various machines tend to lose or maintain synchronism. 
However. this rned~otl bzcornzs cuntbersomr and very costh for vety'i&ge systems inv- 
olving r geat numbzr of pcrators.  This explains the need for dirzct methods for stabil- 



ity investigations. 'These methods detemune stability without explicitly solving the 
Jifferential equations dksc~ibing the ' ~ i t e n i  @~ianu'cs . Obtiousfy. fhe direct methods 
advantage over the standard numerical inteption procedwe is their rapidity and the 
resulting saving of computing tinle ["I. 
However. the direct methods of stability nnalysis mr acknowledged to provide 
satisfactory practical results. as far as the use of a simplified mathematical system 
description may be acceptable. It is to be noted that only clrssical generator model( t h a  
is .constant internal voltage behind the generator transient reactance) can be used. and 
the effects of control and stability aids can not bz represented [3]. 

Because of the hi$ efficiency of the Lyapunov's direct method, it has important 
applications in power system desip  and operation. It can be used, for example. for 
estimating critical fault clearing time, for on-line security assessment. atid for emergency 
control. This method has come. recentb, to possess accuracy well consistent with results 
predicted by sinrulations for relatively stnplified system repr&ntations [4j. 

In the last two decades the decom~osition-armration method, which is based on "" " 
Bellman's concept of vector Lyapunov functiotls[51, has been used for stability analysis 
of large-scale power systetns[6-17). 
In Bef[lB],a matrix Lyapunov fimction was constructed md used for the >ystet~l 
aggregation. 
However. the expected advantages of tile deconiposition-aggresation method art 
numerous[l9]. It is obvious that the Lyapunov function of a low-order disconnected 
!tiee)wbsystem can handle more sophisticated p e r a t o r  and transmission models. 
Furthermore . exact estimates of the.overd system stability domain may be defined. 

It is to be noted that . the power ystern stability analysis was carried out in the 
papers@-181, considering the generator classical model. This is equivalent to neglecting 
the erect of generators flux decays. 

In the papers[4.20-221. the lransient stability andysis of multinlnchine power systems 
have been canied out considering the generator thud-order dynamic model .that is, the 
generator internal voltage conlponetit ,. is changed with time. while the voltage 
component E'd . is kept constant during the transient period. The authors applied the 
scalar Lyapunov function approach, and they introduced different foms for the used 
(scalar) I.yapunov Amctions which were constnlcted u d t r  tlir assumption that aU 
h'ansfer conductances Gi, , art nzglected. 

In the present an N-machine power system is considered, and the two intemal 
voltage components Eq and E'd .of each machine we assumed to change with time. 
~ssuming the uniform mechanical dan~ping case and applying the pair-wise 
decomposition (each subsystm including two nmdlines, one of than is the comparison 
m a c l ~ e )  the system mathematical model (the trar~sfcr conductances are taken into 
consideration ) is obtained. and it is deco~nposed into N-1 interconnected subsystems. 
Thzn, eacli subsystem is decomposed into free (discormected) subsystem colitains three 
(the largest number) nonlinenrities, and interconnections. Fiiially, a square agregatition 
n~aviu of the order (N-l ) is obtained .and stability of this matrix implies asymptotic 
stability of tile system equilibrium. 

2 Power svstrm model 
Colaidcr an N-maclinc power systzm (th: transfer conductmces are inc1uded)with 

mechanical damping, arid k t  11s assume that the machinr parameters Mi and P,,, are 
constant. 

Now assume that each machine f the stator resistance is negectedi is represented by 
thc two-axis modcl [I], in which thc two cornponcnts Elq and E'd of thc intcrnal voltagc 



E' ( see Fig. 1) are considered to be time variables. The absolute motion of me ith 
tnachine is described by the equations, 

I d-axis 

Fig. 1 Phasor diagram of system generator 

Mi i i ' i + ~ ~  i i  =P"i -P,i 

T'@i kqi = Effi -E'(,i " (X& - X'& ) I& 

T'qoi kdi = - E'di - ( Xqi - X' ,,i ) Iqi (1) 

where 
. . .......... F,i = E'& I,j + E',j Iqi - ( X' - X'di ) I& Iqi i = 1.2 N ( 2 )  'I' 

Tt is to be noted that, the 6ynawimics of the automatic voltage regulator ( AVR ),are not 
considered .for swlicity . and hence the voltage Ef& will be equal to its pretrsllsizllr 
value Ef&. 

Under the assumption X ' e  Xqi ( machines with solid cylindrical rotors are 
considered). we get [l], 

N 

Fei = CI-,~ { [E'gi cos (6 ,i -6 ii 1 -Ed, sin ( 8 ij - 6 ij )] - 
fi +I?& [E'di cos ( ? ij - 6 .. ) +Eeq, s%( Y ii - 6 .  )]) i = 1.2 .......... N (3) Y . 11 

where 6 i , is the rotor an@ of the i-th machine. or position of the rotor q-axis from thz 
common reference k m e .  

Now, let us introduce the FoUowing (4N-I) state variables ( thc Nth msdrinc is 
relected as a comparison machine ! 

0 

a~ = 6~ - S N  ; i  = N 

w i  = 6 i  . i = 1,2 ............. N 
0 .  ED^ = ~ f i  -Eldi . i = 1,1 ............. N (4) 5 p  y q i  - EIqi . 

0 

where 6 N, E;Li and Elq, are the pretransient values of 6 .Ed and EPqi .respectively. 
Assunling the uniform damping case, that is, when 

.............. ( D i /  Mi ) = ,  8, .i = l.? N (5) 
we can derive the mathematical model of t he  whole system as 



A&' = w i' L WhJ = w s  
e C 

G i  = - h  w i  - ( ~ / M ~ ) G ~ [ E ? Q  + ~ E ~ ~ E ' @ + E %    ED^ El&] - ( l /Mi )  
C' 0 

Z%j [{4j  f y  ( o ij ) + ~ * ~ j  g ij (is ij)]+( ESqiEu +E'&ED~ ) COS( 8 4 - 5 ij)+ 
0 

C ( I ? ' ~ E ~  -E'qiEDj ) sin( 8 ij - 6 y )+ f Qi (EQ+ 2'4) +E=i   ED^+ E'dj) ) 
G 

COS( H ij - S ij) +(  ED^ ( EQ,+ E'(U) - E Q ~  ( E=j+ sin ( 0 I, .. - 6 1j -. )I 
0 

Ttd(li &, = - [I- (-X& -Xdi ) Bj, jEyi + &, -Xdi )[Ciii  ED^ +ZYij(Epdj.fij (a ij) - 
0 

-El* g ij (oij) + E ~ j s i n ( 8 ~ ~ - S i j )  +  ED^ cos (0 ij -6 ij ) )] 
0 

X' . )[G&Q~ +CYij {E'gJij (cr ij) + T ' e i  EJJ~ = - [l- ( Xqi - XIqi ) Bii  ED^ - (Xqi - 
+ g ' d j g i j ( o i j ) + ~ Q j c o s ( ( 3 , : , - ~ i j ) - ~ D j  ~ i n ( e ~ ~ - ~ j ~ ~ ) ) ]  

N i =  1 7  -,..., N (6) 
where, is defined as C , and the nonlinear functions 5, and gy are given as 

j#i , CJ 

. 4 j (o i j )  = cos(aij + 6 4 - B i j )  -cos(Si j-8y)  
0 0 

~ . ( a -  - sin(o0 + 6 i j - 8 i j ) -  sin(Sij-8ij)  -g 19- (7) 
3 Power system dccmnxlosition 

Decomposition of the considered N-machine system is canied out . in the paper. as 
follows: 

1- .411 the system loads are represented by constant impedances to ground ( those 
impedances are obtained from the pretransient conditions m the system). 

2- W the system nodes, except the generaton internal nodes, are elimiuated . Hence. 
we obtain the system Nth-order reduced admittance matrix P . 

3- Referring to the obtained Y-mat& and using the pair-wise decomposition [7-9.11- 
141 the system is decomposed into (N - 1) ''two-machine" subsystems. 

Now, defining the state vector X 1 in the form 

Xr; . W s  .EQ, ,Egi &QN .EDNIT  XI^ .XI ~ 1 6 1 ~  (8) 
we can decompose the mathematical model of the d o l e  system (eqn. 6) into S = N - 1 
sixth-order interconnected subsystems. Each subsystem can be written in the general 
form 
i r ; p I  X I + B I F I ( ~ I ) + ~ I ( X )  . 01 = cTI X I  . 1=1.2 ,........ S (9) 

where PI , B I and CI are constant matrices with appropriate dimensions, and FI ( a 
I ) is a nonlinear vector function, whose elements are arbitrary chosen. 

cferring to eqn. 8. we derive the matrix PI in the form 
i0 1 0 0 0 0 
o -A - 2  - 2  E I 2ciNN & q N ~ N  2 h r  indN /M> 
0 0 [-I+(Xdi-X'di)%] /T'& KiG ji 0 0 
0 0 -Li Gii [-I + ( % -X'qi)B, ] IT'q0i 0 

0 0 0 0 [-l+CX& -X'& ) Bh2~I /T 'do~ KN GNN 
0 0 0 0 -L&.~N I - ~ + ( X q ~ - X ' q ~ ) B m W q ~  

- 



Now, in order to obtain a laxeer stability domain estimate j13-171, it is assumed that the 
foUowitig tluer (the largest nuniber) nonlinear fimctions (see eqn. 7) are included in the 
vector FT . 

Note care* that the three fimctions givm by eqn.11 , satis@ the foUowing conditions 

fik( 0) = 0 ; O 5 o lk f id o p) C' :;* oLik , k = 1.2.3 (12) 

on the bounded intetvsls which are defined for the three functions. respectively. as 

follows 
0 

-t( 7~ - o ~ N + s ~ )  C- a~ 5' 3(eiN-SON) 
0 

- ( n +  2 a ~ )  5 0s s ( n: - 2 i i u  ) 
C (I 

-2 ( 7t - H ~ N  - 8 ~ )  2 q.+i -. '- Z ( t 3 s + S j ~  ) ( 1 3  

In zqn.12. the positive constants .g may be determined as 

sIR = 3.h calk) a,, , , o . k = 1.2.3 I = 
(14) 

Note also that there exist positivc 'constants. &a E ( 0 . < jk ) . for which the 
fouowing condition 

alk ,ilk ( a ,k) 2 Elk ( J ~ ~ ~  . k = 1.23 (15) 
is satisfied on the compact intz~vai of o ? ~  . - 

U&=[&k.uk 1 k = 1 , 2 , 3  (16) 
where in, . & a2 the negative and positive solutions. respectively. of the equation 

.$k ( a ,rk ) = Elk o :k ' ,k=1,23 (1.7) 
Now. referring to eqn 6 . we define the foUowing matrices 

FI (a I ) = [,$i( 01; ) ,f;i'(a!2) ,.?jJ '513 )IT (1s) 
1 0 0 0 0 

0 0 

-1 0 0 0 0 (19) 

- 
0 0 

0 
0 

L 0 

matricest 
h r ( X )  = l l r (Xr  j + h w 1 , x )  

Let us . for simplicity . write the (vector) malrix h~ ( X ) , as the a m  of two (vector) 

( Z l j  
u;llert 

~ ~ ( ~ ~ I ) ~ [ ~ . ~ ~ I Z ( ~ ~ ) , ~ ~ ~ ; Y ~ ! . ~ ~ ~ ( ~ < ~ ) , I I I ~ ( X I ) . ~ ~ ~ ( S ~ ) F  



' h*I'(~)='fi;hCI2(~),h*D(~).h*I4(~),"h*I5(~),h*I6(~)P' (22) 

The elements of the (vector) lq ( XI ) , are given as 

h 12( XI ) = -[ Gii ( x 2 ~  +x214 ) IMi I + [GNN ( ~ 2 I j  + x216 Y MN I '[Iw )+ 

+ (l/MN)] A*&B* f14( X n )  -Yw [(l/M i )  cos (e& -6 - 
0 0 

- ( I & C O S ( ~ ~ - S ~ ~ ) I  { E ' ~ ~ x ~ ~ + ~ ~ x ~ + E ' ~ x ~ ~  ' 
+ Ew,x16+ X ~ X ~ + X I ~ X I ~ } - Y & [ ( I I M ~ ) ~ ( ~ & - ~ ~ ) ~  

0 0 0 

+ (l/MN ) sin (8 h - 6  ] (-E'& X n+ ElqN X14 + El& Xfi - 
-&q$16 + xn X J ~  + x14 Xu ) 

0 

hn ( X I )  =& EpqlJ R i  f14(x11) +KiYitJ[X15 s in(e&-8i fJ  ) +  

+ K I 6 c 0 ~ ( e ~ - 6 & ) ]  

h I4 (x1)  = 5 2tdN BN P14(x11) +%YiN  XI^ s i n ( 0 ~  

- x ~ c o s ( ~ ~ - - s ~ ) I  

( X I )  = - ~ ~ ~ 8 ~ ~  B & ~ C ~ ~ ( X ~ ~ ) + K ~ Y ~ [ X ~  h ( e h ~  + 8 & ) +  

+ X 1 4 c o s ( e h i + 6 i ~ ) 1  

. . .!I& ( X I )  = L~; '&B&J f h 1 4 ( ~ n ) ' ~ N ~ i N  [X14 s i n ( e & +  6 ~ ) -  
- X ~ c o s ( e &  + S & ) l  

and the elements of the metm hC1 ( X ) . are detined as 

h*n( X ) = - ( m i ) 6 C  Y i  ( [kjj~,(O $ + ~ * i j i j g r j . ( O g r j . ) ~ + [ ~ ' q i ~ ~  + 

+ ivdj x 14 + E ' ~ ~ x ~ ~  +El& XJ4 + x B xn + x 14 X J ~  1 
0 0 

COS (0 ij -6 ) - p d j  x.13 -ra x 14 +gr6 XJ~-E'& X n  fx 13 Xj4 ' 

- X14 Xnl  sin(0ij -6 ij )I]+' (I&) [ ~ Y N ~ ( [  A~N fv ( a y )  + 
U 

+AiN g v  (0  )I + [EqN x n + gm x ~4 +&qj  XI^ +?dj  XI^ + 
e 

~X15XJ3+X16XJ4 ~ C O S @ N ~ - ~ N ~ ) - [ E ' @ X J ~  -E'&XJ3+ 

+ Eldj xu - 6 q i  XI6 + x x ~ 4  -x 16 X J ~  1 sin (0 ~j - 6 Nj )] ] 
0 1 I 

h * n ( ~ )  = K ~ C  Yij f [ E d j & ( ~ ~ ) - E q i  g l j . ( ~ ~ ~ ) l + X j 3 s i n ( 9 i j - 6 i j ) +  

+ XJ4 COS (e  ij -6 ij )) 
0 

J I * ~ ~ ( X  ) =-&Cyij  { [ 2 q j & ( 0 ~ ) + ~ ' ~ ~  ggrj.(c~grj.)l+Xncos(eij-&~- 

-xJ4 &((8ij-Sij)] 
0 0 

h * n ( ~  ) = KN E y N j  {[rdj fw(O)+J)-Erqj g ~ ( ~ ~ j ) l +  

+ X J ~ ~ ( ~ N ~ ' ~ N ~ ) + X J ~ C O S ( ~ N ~ - ~ N ~ ) )  
0 

h e I 6 ( x )  =-LN E yNj f IE1qj & ( O ~ ) * E ' ~ ~  E ~ ( o ~ ) I +  

+ X J 3 c 0 s ( e ~ j - 6 ~ j )  - X J 4 h ( e ~ j -  i3 Nj . ) > ,  @I 
N-1 

Note that E is defined as C , and the nonlinear function f14 (XU ) . is @en in 
the form 

.* 
j # j  

9 t14(Xn) = c o s ( G + 6 ~ )  - C O S ~ *  



4 Pmvcr nsim rraarmation 
Let us, as a Erst step, decompose each of the interconnected subsystems of eq. 9 , 

into the free ( @ s c o M ~ c ~ ~ ~ )  subsystem, described by the equations 
k I  = PI X I + B I  FI ( 0 1 )  : 01 = X I  .I=1.2 ,......., S (25) 

and the interconnections h I ( X ) . 
Next, we accept a free snbsystem Lyapunov function m the form 17-10,13 - 17 1 .  

3 

VI (XI ) = xIT HI XI + C yjRI fim (orn? ) d q m  , I = 1 2  ,..... S (26) 
m=l I= 

where HI is sm-order symmetric positive definite matrix .xlm are arbitmy positive 
numbers . and the nonlinear functions fi, are given by eqn. 11 . EmaUy, following the 
aggregation procedure in Reference 23, an aggregation matrix, A 3 q J 1, is constructed. 
The elements ( real numbers) of this matrix obey the inequality 

S 

+ I (  X I  ) 4 C U I ( X I )  U j ( X j )  .I=1,2 ........... S (27) 
J=1 

where (X 1)  , is the total time derivative of the tlmction V I ( X I ). along the 
motion of the i-th mterconnected subsystem of eqn 9. 
It is to bc noted that the left-hand side of eqn. 27. cao be mitten as 

G I ( ~ I )  = G I ( x I ) ~  + I P ~ v I ( x I ) ] ~  h 1 ( X )  (28) 
where VI ( XI )f , is the total time derivative of the function VI . dong the motion of the 
i-th free subsystem. 

In eqn 27 , the comparison functions UI and U'J , are chosen in the form [79] 

U k f X k )  =UXkU = ( xTk x k ) l E  for k = l J  ,........, S 09)  
4.1 M i l &  mterion 

According to theorem 1 of Reference 23, stability of the aggregation matm , 
A =[ a ik ] , or, equivalentfy, if it is satisfied the Hick's conditions 

implies asymptotic stability of the system cquilibh. 
4.2 .4ggregation matrix 

As a first step for determining the system aggregation matrix, the two tmns in 
the right-hand side of eqa 28 . arc computed. Thenthe foUowingmajoriZations arc. 
introduced. 

0 

t F 1 4 ( x n ) l <  q i  I X U I  i = Isin 6 ~ ~ 1  
c 

I f -  IJ ( 0 . -  IJ ) I 5 S i j  (1x111 + 1 Xj11) , t i j  = ISin(0ij - 6 i j ) I  

I g i j ( f J i j ) l  5 < ' i j ( l x n k  + I x J l l )  . < ' i j = l ~ ~ ~ ( 8 i j  -iij)l 
0 

l s m ( 8 p p  6jN)I 

I cos ( e j ~ t  ifjN) I 

(3 1) 



where. a and b are any given ( posiiive.negative, or even zero )numbers. 
Finally, the light-hand side of eqn.28, is majorized as, 

s 
G1(xI)  S -h*rU x I u 2 + C 2  $ ( z * ~  :z"T) UX~UUXKU . I=U, . . . . . . ,S  

K#I (32) 
where h ' ~  is'the minimal ( positive) eigenvalue of the sixth-order symelric matrix R I, 

whose elements are given byaeqn 35 , and the elements zfI and Z-I are detined by 
aqn. 37 (see Appendix) . 
Comparing eqns. 27 and 32 , the system aggregation matrix, A = [ax] , of order (N-1) 
is derived, and its elements are defined as 

- . K = I  -1 
~ z ~ ( z * ~  ; Z-1) , K # I  K,I=1 ,2  ,...., S = N - 1  (33) 

It is of importance to note that, stabiity of the aggregation matrix A ( see condition 
30), can be eady ensured for larger values of the cigenvalue h* ,and/ or smaller values 
of the off-diagod elements a ij . However, smaller values of the elements q, ,can be 
obtained by decomposing the system, refening to the reduced admittance matrix Y .  so 
that only weak interconnections among internal nodes of the system machines appear as 
subsystem couplings. 
5 Nulnrr i caIucdc  

Fig. 2 shows the one-line diagram of the 3-machine. 4-bus power system which 
is chosen, in this example, for an application of the developed s t a b i i  approach The 
system stability computations are canied out as follows: 

1 - The reactances X'd and X a are inserted at the respective buses of the 
sysLem, and we copute 

0 0 
E'q = 1.01926 , E'&= -0.01615 , i5 1 = - 3.93O E ' q  = 1.00532 . 
0 0 0 

Ed2 = -0.00362 A 6, = -2.76 E 'd  = 1.03389 , E8,j3= -0.01097 , 6 3= 0.720 
2- The equivalent impedances ohhe system loads are computed and inserted in the 

netwwkThen the system nodes, except the machines intefnal nodes, arc eliminated, and 
the grstem reduced third-order symmemc admittance malrix Y ,  is determined as, 

Yll= 0.30553 / -73.04O ; Y12 = O.OOll3 / 9 3 . 5 4 O  ; Y1-j =0.23709 w0 

3 - Referring to the system matrix ,Y. given in step 2. the system is decomposed 
( machine 3 is chosen as the comparison machine) into two "two-machine" subsystems.. 
Then, selcchng tht following parameters 

M l = M 2 = 0 . 2 0  , M3 = 14.0 ; h = 6.0 

h255 = 40 ; K1 ~ 0 . 4 5  , K2 =0.15 
and using expression (33). we compute the matrix 



0.063+j0.078 

T = 6.0 sec Fig. (2) Three-machine <do ,do 
Tqo= 0.60sec &bus power system 1' = O.6Dsec 

90 (all values in p.u.1 pm = 0,0h55 P, = 0.0142 
-0.745154 0.449899 * =[ 

0.280617 - 0  178351 I 
which is a stable matrix and satisfies conditions (30) . This implies asymptotic stability of 
the system equilibrium. Then. according to theorem 4 of Reference23. and refening 
to the Appendix in Reference 16. we compute 

E l = (  X :  ( V 1  (XI ) '  1 . 5 v 2  ( X 2  ) ) 5  4.680125) (34) 

as an estimate of the system asymptotic stability domain. 
4 - As a11 application of the developed approach to practical $ability studies of the 

considered system, it is assumed that a 3-phase short circuit fault . with successful 
reclosure. ocewed near bus 4. at 5 % of the distance between the buses 1 ,and 4. The 
fault is cleared, by switching off the faulted line, after 0.24 second &om the fault instant. 
Considering the hult and fault-clearing conditions. the system equations (see eqn. 1). are 
solved . For each time interval the Lyapunov function, given by eqn.26, is computed for 
each subsystem . Substituting the two computed Lyapuniv functions into eqn.34 , it is 
found that this equation i s  satisficd ( V, = 4.63527 , and V2 =0.00395 .are 
computed) at 0.450 second &om the fault-clehg instant . 
Eig. 3 , shows variations of the six state variables ( the-time is measured from the 
instant at which the open line is reclosed) of the first subsystem , which includes the 
machines 1 and 3 . 
It is obvious , refening to Fig.? , that the system will regain its prefault (normal ) 

condition after reclosing (the fault is disappeared ) the faulted line. 



Fig. 3 States of first subsystem against time 

after reclosing the opem (faulted) line. 

Pig. ( 5 )  S t a t e s  of  t h e  first subsystem a g a i n s t  
t ime a f t e r  r e c l o s i n g  t h e  open ( f a u l t e d )  l i n e .  

6 ConcltLsions 
A transient stability approach is developed, in the paper, for multi machine 

power systems considering the 2-axis generator model instead of the one-axis model. 
or the classical model . which are usually considered for transient stability studiess using 
the direct methods .Thus each generator is described by a fouxth-order dynamic model. 



The approach developed is applied to a 3-machine, 4-bus power system, and an estimate 
for the system asymptotic stability domain is determined. A 3-phase short circuit fauk 
.with successful reclosure, is assuined to o c c k  near oneof the system buses ,and a 
reclosure time for the faulted line is determined such that the system cah regain its 
prefault (normal) conditions. :1t is found that ibe stability approach developed is suitable 
and can be easily used for practical and on-line stabiity studies of multimachu~e power 
systems in which number of the machines may be . . more than three . 
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Nomcndature 

Pmi = mechanical power delivered to ith machine 
P,i = electrical power delivered by ith machine 

Si =rotor angle, or position of the rotor q-axis from the reference 
S di , ,\i = direct-axis.qua&ature-axis synchronous reactances 
X'di , X'qj = d-axis, q-axis transient reactances 
Efd =exciter voltage referred to the armature circuit 
E'i = voltage behind d-axis transient reac'tance 
E'di , Erqi = d-axis, q-axis components of the voltage E'i 
E = mature  emf correspondmg to the field current 
0 q 
Efdi . %qi . E'di=pr&Il~ient(,~r steady-state)vdues of the voltages Efdi ,Elq, and 

E'di .respectively 

wi = rotor speed with respect to the synchronous speed 
Yij = Yji = modulus of transfer admittance between internal nodes of ith and jth 

generators 

Qij = Qji =phase angle of transfer admittance Yij 
Di = mechanical damping 

hi = (Di I Mi)= mechanical damping coefficient 

G . . - Y . .  " - lJ cos oil - transfer conductance 

- 1 2  - 





r144 = 2 (1ITPq0i) [1-(Xqi -X1"i )Bii ] ( K j  / ~ i ) h 5 3  

r155 = ~ ' ( I I T ' ~ ~ ) [ I - ( X ~ ' - X ~  )BmJ h155 

r166 = ~ ( ~ ~ T ' ~ o N ) [ ~ - ( X ~ N - X ' ~ N ) B N L J I ( K N / L N ) ~ ~ ~ ~  (35) 
N-1 

It is to be noted that C is dehed as 2 . and the following constants are given 
j # i 

h 4 2 = { ( 1 + ~ 1 ) / ~  1612 6 4 4 = ( K i l L i )  h133 , 
~ I ~ = ( K N I L N )  1455 

where , Kr , hII2 , 1 5 3  and hIS5 , are arbitrary positive constants. 
In eqn 35, the elements Ci and c * ~  are d e h d  as 

C i  = \I 0 1 ~ ~ ) ~ .  + (lIMN)' - 2 ( 1 I M i ) ( l I  M ~ ) c o s  2 8 a  

c*. I = \j ( Ki h133 )2 + ( ~ ~ h ~ ~ ~  j 2  - 2 Kj KN h53 h155 cos 2 8~ 

and h 1, is magnitude of the maximal eigenvalue of the fourth-order syrmnetric matrix 
Qi , whose elements are given as 

qiI1 = ~ j ~ ~ = - ( l / M i )  0 6  : $33 = q i 4 4 = ( 1 / M ~ )  GNN 
qi13 = qlI4 = qlZ3 = qiZ4.= 0.5 C i Y a  ; qiI2 = qi34 = 0 
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