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Abétmct:

The aim of this paper is 1o can'y out transient stability analysis of an N-machine
power system using the decomposition-aggregation method, and considering. a more
sophisticated generator modsl. Each of the system generators is represented by the so-
called 2-wds model [1], in which the two components E'q and E'q of the generator
internal voltage E' are comsidered fo change with time. This is instead of assuming the
voltage E' , or the voliage component E'y . to be constant as usually considered, for
simplicity, in power system stability anatysis using the direct methods.

The system network. in which the loads are represented by constant impedances. is

“reduesd to the generators internal nodes. Describing each generator by a fouith-order

dynamic model,and considering uniform mechanical damping, the system mathematical
model (the transfer conductances are included) is obtained and decompeosed into (N-1)
interconnected subsysterns by using the pair-wise decomposition. A square aggregation
matrix of the order (N-1) is obtained , and stability of this matrix implies asymptotic
stability of the svstem equilibrium.

The developed stability approach is applied to g 3-machine.4-bus power system cxample
and an estimate for the system asymptotic stability domain is determined. A 3-phase
short circuit fault. with successtil reclosure, is assumed near a system bus. and the
stability computations are cartied out. A reclosure time for the faulted line is detennined
such that the system -can regain its prefault (normal) conditions. It is shown that the
developed approach s suitable and applicable in pracucal and on-line stability studies of
power systems . :

1 Iniroduction
" Withthe advent of larze power systems came a renewed interest in the stability

_properties of such svstems. Indeed, the tendency of a power system to lose sfynchfoni_sm
appears to be much more prevalent for targe systems than for relatively isolated groups.

Most stability investigations of large power systams are based on direcr simulation of the
sysiem and integration of the differential cquations of the system for various initial
conditions. and to observe if the various machines tend to lose or maintain synchronism,
However. this method becomes cumbersome and very costly for very lar pe systems inv-
olving a great number of generators. This explains the need for direct methods for stabil-
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ity investivations. These methods determine stability without explicitly solving the
- differential cquations describing the system dynamics . Obviously, the direct methods
advantage over the standard numerieal integration procedure is their rapidity and the
resulting saving of computing time [2].

However. the direct methods of stability analysis are acknowledged to provide
satisfactory practical results. as far as the use of a simplified mathematical system
description may be acceptable. It is to be noted that only classical generator model( that
is .constant internal voltage behind the generator transient reactance} can be used. and
the etfects of control and stability aids can not be represented [3].

Because of the high efficiency of the Lyapunov's direct method, it has important
applications in power system design and operation. It can be used, for example. for
sstimating  critical fault clearing time, for on-line security assessment, and for emergency
control. This method has come, recently. to possesy accuracy well consistent with results
predicted by simulations for relatively simplified system representations {4].

In the fast two decades the decomposition-aggregation method, which is based on
Bellman's concept of vectar Lyapunov functions{5], has been used for stability analysis
of large-scale power systems(6-17].

In Ref[18],2 mafrix Lyapunov fimction was constructed and wsed for the system
aggregation.

However. the expected advantages of tiie decomposition-aggregation method are
numerous{19). 1t is obvious that the Lyapunov function of a low-order disconnected
‘(free)subsvstem  can handle more sophisticated generator and gansmission medsls.
Furihermore . exact estimates of the overall system stability domain may be defined.

It is to be noted that . the power system stability analysis was carried out in the
papers[6-18], considering the generator classical model . This is equivalent to neglecting
the sffect of generators flux decays.

In the papers(4,20-22]. the transient stability analysis of multimachine power systems
have been carried out considering the generator third-order dynamic model .that is, the
generator intemal voltage component E' .. is changed with time. while the voltage
component ‘E'g | is kept constant during the transient period. The authors applied the
scalar Lyapunov function appreach, and they introduced different forms for the used
(scalar) Lvapunov finctions which were constructed -under the assumption that all
transfer conductances Gjj , are neglected.

In the present paper an N-machine power system is considered, and the two internal
voltage components E'y and E'q .of each machine are assumed to change with time.
Assuming the uniform mechanical damping case and applying the pair-wise
decomposition (each subsystewm including two machines, one of them is the comparison
machine) the system mathematical model (the transfer conductances are taken into
consideration ) is obtained. and itis decomposed into N-1 interconnected subsystems.
Then, each subsystem is decomposed mto free (disconnectsd) subsystem contains three
{the largest number) nonlinearities, and interconnections. Finally, a square aggregation
matrix of the order (N-1) is obtained .and stability of this matrix implies asymptotic
stabiity of the systemn equilibrium.

2 Power system madel
Cousider an N-machine power systemn (the transfer conductances are included)with
mechanical daraping, and let us assume that the machine parameters M; and P, are
constant .
Now assume that each machine ¢ the stator resistance is neglected) is represented by
the two-axis mode! [1], in which the two components E'qand E'q of the intcrmal voltage
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E' ( sec Fig. 1) are considered to be time variables. The absolute motion of the ith
maching is described by the equations,
d-axis

Fig. 1 Phasor diagram of gystem generator

Mj 8;+Dj & =Ppy Py
Taoi E'gi = Bfgi -Fgi * (Xdi - Xdi) lai

where

Pei = E'g Qi+Ehi%i—(Xhimxm)lml¢.i=lemmeﬂ
It is to be moted that, the dynamics of the aufomatic voltage regulator ( AVR ) are not
considered ,for simplicity , and hence the voltage Eggy will be equal to its pretransicnt

value Eg;.
Under the assumption X' gi= X' qj ( machines with solid cylindrical rotors are
considered), we get [1], '

N
EYH{qu[EqJLDa{E!“-O“) Edlsm(ﬂlj-oll)]*
= EG R cos(ﬁu-— o,j)+E m(a,j- 8y N} i=12. .. N (3)

where -8 { . is the rotor angle of the i-th machirie. or position of the rotor q-axs from the

comunon reference frame.
Now, et us introduce the following (4N-1) state variables ( the Nth machine is
selected as @ comparisen machine )
[«]

GiN =0iN-0iN .i=N
wp = o, A=120, N
EQI ql - qu M EDi = E.di "E’dj 1 —1 ‘, -.-..-.N (4)

where § iN> E di 2nd E qi ar¢ the pretransient valnes of 5 jy ' :md E'gi ,rcsPr:cuvc!y

Assuming the uniform damping case, that is, when
(Dt M) = 2 J= L2 N 5
we can derive the mathematical model of the whole system as



SiN = ®i- ON = oy
®j=-% o -0/M) Gl E2q; +vEQ,i’:'q,+E2D, 2Ep;i Eg1-0/Mj)
.».,Yl_l[{Ag ;U(o[j)m ij2ij J),-+(F i EQ;j +Ed,EDJ)cos(6,j-oJ)+ ;
*(E'(hEQl —quEDJ)sm( Glj—z:‘j #{EQi (EQJ“F E'q]) +Epj (Epj* Ed_])} .
cos( By -3 i +{ ED,(EQ,+Eq,) EQI(EDJ+EdJ)} sm(eu -85)]
Td(nEQl='[i (Xqi - X ) By i+ (Kgi -X ) Gi Bpi +E¥5{ B i (o ) - .
-.qu jj(oj) +EQjsin(0;;-3j) + Ep; cos(eij—o J)1]
T'quﬁDiz'[l'(qu' 'qi ) Bii IEDj - Kgi - X'gi ) GiiE i +Z Vi {Eq]flj (O + :
+ Egjgi( o+ EQjeos 0 ;-85) - Epj sin(8;-35)}] ;‘

N [i=12,.,N (6)
where, X is definedss Z , and the nonlinear functions Jij and gj; are given as '
i# o .
,ﬁj(ﬁij) = cas(cr,-j + aij-eij) -cos(gij-eij)
g‘j(cij)= Sin(cij"‘sij"aij)'sm(sij'eij) ')

3 Power system decomposition
Decomposition of the considered N-machine system is carried out . in the paper. as

follows:

1- All the system Joads are represented by constant impedances to ground ( those
impedances are obtained from the pretransient conditions in the system).

2- All the system nodes, except the generators internal nedes, are eliminated . Hence,
we obtain the system Nth-order reduced admittance matrix Y . :

3- Referring to the obtained Y-mairix, and using the pair-wise decomposition [7-9.11-
14] the system is decomposed into (N - 1)  "two-machins” subsystems.

Now, defining the state vector X 1 in the form

Xr=[oiN . @iN EQi -Epi EQN EpNIT =[Xn. X X3 X4 Xg XlT @)
we can decompose the mathematical model of the whole system (eqn. 6) into S=N - 1 §

sixth-order interconnected subsystems. Each subsystem can be written in the peneral
fotm

X=P; X+ BiFi(op)+h(X) .oy=¢Ty Xy .1=12... )
where Py, By and €y are constant matrices with appropriate dimensions, and Ff ( o
1) is a nontinear vector function, whose elements are arbitrary chosen.

Referring to cqn. 8. we derive the matrix Py in the form

-

01 0 0 0 0
0 -a 2G5 %"ql ™M ~2Gy E'di M 2Ggy E’qNMN ?.G_m; E’dN My ’
Pr=| ¢ O [-+Xg-X'¢)Biil {Tdoi KiGy 0 0 :
00 -Ij Gy [+ (Xqi -X'giBii 1/T'q0i 0 0 v
00 )] 1] [-—l'i'(XdN "'X'dN ) BNH] /T'dON KN GNN ‘
0 0 0 0 LGy [+ Egu-X o) Bawl T gony
~ ' (10
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Now. in order to obtain a laxger stability domain estimate {13-17]. it is assumed that the
following three (the largest nuniber) nonlinear functions (see eqn. 7) are included in the
vector Fy.

G =
Jjp (o) =cos (O N + Gbm'-em)‘:-cos(aﬂq—-eﬂq)
' Sz (o) =sin (ojy+ Sjy)-sindy ,
’ ©
£i3 (073) = c0s (o N + i -0 i) ~c08 (S N -O )

(11)
Note carcfully that the three fimctions given by eqn. 11 , sutisfy the following conditions

S0 =0: 0fop fyoy) Sizoly k=123 ()

on the bounded intervals which are defined for the three functions. respectively, as
follows

—Z(TE—GiN+8°ﬂq) SN S'E(Bm—c’i?m)
5 M F28p) € ON S (W -28;)
: oNi € 20N+ N )
2qn.12, the positive constants £ g may be determined as
En= Ofglop/ Oopiop=0.k=123

A

~2( -0y -B?iN)EZ (13)

(14

Note also that there cxist posifive constants. € € ( 0 . % j ). for which the

a following condition

! o Sk (o) = By ol k=123 (15)
is satistied on the compact interval of o g .

( U= [ U, Uk ] k=123

(16
‘ where Uy Uy are the negative anid positive solutions, respectively, of the cquation

nlog)=€pop

k=123 (7
Now, referring to eqn. 6 . we define the following matrices
Flop)= [ o) fixorm . fp3to)] (1s)
I a 0 g a 0
chiy=|{1 o o o 0 0
-1 0 0 0 0 0 {19)
3 0 0 o ]
- AINYLN“MI f (1M - (IMIS)]A NGN ANY My
By =| K; ‘llNE'dN -K; f:'qNGN )
! -L; YINE‘E]N ‘LiE'dNGiN . 0
o EnEq G KN E'di YiN
, 0 Ly B¢ OGN ~InEgYin | @
Letus. for sunplmltv writs the {vector) matrix hy ( X ) , as the sum of two (vector)
 matrices,

bi{X)=h(Xy) + h7(Xy 1)
_ where

MXO={0.hp(XD, b (X b (X . hs (XD . hg(XpD T
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CEEX)=T0, 0" (X)), R (X) 8"y (X)), 075 (X)), b7 (O 22y
The elements of the (vector) matrix hy ( Xy ) , are given as
h pf Xp) = -1 Gg ( X213 +X254 ) 1M 1+ [Grg (X235 + X276 Y MiN 1 -1 )+
+ (1M )} A%y Bing £ € X 1) Y [(UM ) e0s (0 iy -8 ) -
- (Mg cos @y -3 )] B X+ B X5 +Ban X s +
+ EgXg+ XpXs+XuXi6 J-Yie [(M ;) sin (0 i-8 po) +
+ (/M ) sin (0 -8 i) | {-ﬁ'mxm+ﬁ'qn X+ Bg X -
-E4i%e + Xp Xi6 * X X5 )
b3 (X1) =K ﬁ'qﬂ Bay £ 14 (Xn) + K Vg [ X g5 sin (8 pq- 3 )+
+ Xpgcos{Ojpy- 0711
by (X1) = Li Bqy Baw 19 (X)) +1Li Vi [ X6 sin(Opy -3ing) -
~Xrscos (O o 1
bys (X1) = —KNﬁ'qi Bin ' (X )+ Ky Yig [ X3 sin( By + S0+
+ Xpgceos(Opr+ 8yl
bpg (X1) = LyEqi Bay i (X)) + Ly Yy [Xpg sin (O + 30) -
~Xpcos(Opy + Sig)l
and the elements of the matrix  h"] (X ). are defined 1
B (X)) =-0Mp [E Vi { [Ajfopp+a ljgg(uy)]+[E X3 +
tEG X EgXy +Fa Xt Xp X3t Xy X5
cos(911~5“) [Ed_;XB-Eq]XM'i"Eq‘XM—E(h X3t XX
- Xpg Xy3] sin B -8 i)} ]+ (1Myy) [EYNJ{fAjN N (GA{;)*’
+A" iN &N (UM)}*'[E'qNXB*'%dNXM +Eq]X15+EdJ Xj6 +
+ Xy Xy3+ X 16 Xp4 1 05 (ONj -0 Nj ) - {EqNX_[4 "EdNXB"'
+Egj Xps - Egj X6+ X 15 X14 -X 56 Xy3 1 sin @ xj -8 1)} ]
W'z (X)) =K 2 Yij {[ffdj Aij (o i) -:i_".‘qj gy-(cy-)ﬁ){_rg sin (B -85+
+ Xj4 cos (Glj -83i)}
B (X ) =LY {[qufg(og)a-Edj £ (0 ;X3 cos (85 -8 ) -
X1 m(eu‘z’g)} |
b5 (X ) = Ky Z Yy {[Edj fM(GM)"Eq] enjl{on) 1+
+ X y3sin (BNj~dNj)+ X 4 cos (BNj-ONj) }
b6 (X ) =-Ly & X YNj i [i'qj fM(GMHﬁ'Aj gxplon)
+XI3¢°5(0N3 3Nj) ~ Xpqsin(ONj- SN_;)} (23)
N1

Note that X is definedas ¥ |, and the nonlinear function f'*m ( Xn ).is givcn m
- the form j 7‘- i

Tu®n ) = cos Xy *+ 8y - cos & jy
- 6
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d__Power sysiem aggregaion
Let us, as a first step, decompose each of the tnterconnected subsystems of ¢q. 9, -

nte thr: free (disconnected) subsystem, described by the equations
XI"PIXI""BIFI (1) :01=CTy X1 ,Fl2..... S (25

and the interconnections hy (X ).

Next, we accept a free subsystem Lyapunov function in the form [7-10, 13 -17 ],

S 3 1
V(XD =X By X+ E ¥ f Jim (py ) dop, . 1=12,..8 (26)
m=1 0
where  Hy is sixth-order symmetric positive definite matrix , gy, are arbitrary positive

numbers , and the nonlinear functions S, are given by eqn. 11 . Finally, following the
agpregation procedure in Reference 23, an aggregation matrix, A ={ o 7 1, is constructed.

.The elements ( real numbers) of this matrix obey the inequality

S
Vi(Xp) £ % ag UX)) U(X7) .I=12,...8 - Q7)
B J=1

where V(X 7) . is the total time derivative of the function V(X 1), along the

motion of the i-th inferconnected subsystem of eqn. 9.

It is to be noted that the left-hand side of eqn. 27 , can be wriiten as
VI(XD = VI(XDf + [gd V(XD T bp(X) @8)

where V'{ X; )f, is the total time derivative of the ﬁmcuon V1, glong the motion of the

i-th frec subsystem .
- In eqn. 27 , the comparison functions Uy and Uy, are chosen in the form [7.9]

Uk(Xk) =0Xl = (xXTy xk)m for k=12, S (29)

4.1 Stability criterion
According to theorem 1 of Reference 23, stability of the aggrcgauon matrix ,

A={ i ], or, cquivalently, if it is satisfied the Hick's conditions

i a1 LLAY [ B PIT PP PRP P (I.|k
G-ZI G-zz ................... Cf.Zk
SO I | o
CUL LR wreremseerrsarensios Uk K=12eeen, S (30)

tmplies asymptotic stability of the system equilibrinm.
4.2 Aggregaiion matrix :

As 1 first step for determining the system ageregation matrix, the two terms in
the right-hand side of eqn. 28 , are computed. Then the following majorizations are
introduced ,

I (Xp)I< My 1Xg!l M= Usn 8yl

I f}j(cij S IXpl+ 1Xpl) (t,u =lsiu(9ij'—gij)l
Igij(cij)l < “é*ij(lxnl +1Xnl) .@*ﬁ=lcos(8ij -§ij)l
(fnjlonjit < EnjiXpl " Eng=Isin(Bp+ &)

lgnjlonj) = &'Nj 1Xni . E'Nj=leos (0Nt 5jN)'.I
asn(O® -5)+b cos{® -a)g\lal + b2 (31
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where, a and b are any given ( posiﬁve,ncgaﬁvc,'gf even Zero )ntﬁnbzrs_.
‘Finally, the night-hand side of eqn.zs, is majorized as,

VI(Xp) € -A*pl Xpn2+ Z‘,z Zp(2'7 1277 UXgUB Xyl . 1=12,.......8
Kl : 32
where A7 is'the minimal { positive) cigenvalue of the sixth-order symmetric matrix R 1,
whose elements are given by tqn. 35 , and the clements z* 1 and 2Z~p are defined by
2qn. 37 (see Appendix) .
Comparing eqns. 27 and 32 , the system aggregation matrix , A = [o 1], of order (N-1)
is derived, and its elements are defined as
- A" K=1

XK = ‘
2Z24(2°7; Z771) LK#I K,I=12,..8=N-1 (33)
It is of importance to note that, stability of the aggregation matrix A ( see condition
30), can be easily ensured for larger vatues of the eigenvalue A* ,and/ or smaller values
of the off-diagonal elements o j; . However, smaller values of the elements ajj .can be

obtained by decomposing the system , referring to the reduced admittance matrix Y | so
_that only weak interconnections. among internal nodes of the system machmes appear as
subsystem couplings.
S Numeriocal example

Fig. 2 shows the onc-line diagram of the 3-machine, 4-bus power system which
is chosen, in this example, for an application of the developed stability approach. The
system stability computations are carried out as follows:

1 - The reactances X'q and X'q are inscrted at the respective buses of the

systcm and we copute : . . o
ql = 101926 = E'¢q1=-0. 01615 , 04=-383 E'qp=1.00332
E'dz =-0.00362 3,=-2.76 E'q3 = 1.03389 , %'dI}: -0.01097 , 8 4= 0.720

2 - The equxvalent impedances of the system loads are computed and inserted in the
network. Then the system nodes, except the machines internal nodes, are climinated, and
the system reduced third-order symmerric admittance matrix 'V, is determined as,

Y11=0.30553 /-73.040 ; Yy5 =0.00113/93.64° : Y;3=0.23709 /91.270
Y97=0.11819 [:79.520 :Y 53 =0.10514 /90,850 ; Y33 =0.57099 /-58.93°

. 3 - Referring to the system matrix Y, given in step 2, the system is decomposed
( machine 3 is chosen as the comparison machine) into two "two-machine” subsystems..
Then, selecting the following parameters
My = My =020 , M3=1490 . A =60
E11= 060 , €31 =044 ; £ =000l ,i=12;
hljp=10 ,i=12  hl33 =300, hlss=150 ; h33=200 ,
h2g5 = 40 ; Ky =045 . K, =0.15
and using expression (33), we compute the matrix




X =X =0.04C

}Ed=)£q=0.006
Tdo=6'5 sec
lf =O 65 gec O.3+JO.15 09063+JOQO38
go °° 4 T
P =0-3353 T — y o
. T V5=1.033[Q - v4=0.98L7
0.15 /=87
o |1.10/=80°
0 0.114 /=88
0 p—] -
2 | &:1,005E V1—-1.017L5
0.02+30.01 0.031+30,02
0.001/-86"
=X o= ) =X =0,
1y=,=0-3 : {47,703
X&:Xq=0.045 xd;xq=oio45
N\ . N
Tgo= ©.0 sec Fig.(2) Three-machine —do~ ©+0 S€C
T 0= 0.60sec 4-bus power system T o™ 0.60sec
P = 0.0142 {all values in p.u.) P> = 0,0655
-0.745154 0.449899
A = .
0.280617 . ~0.17835)

which is a stable matrix and satisfies conditions (30) . This implies asymptotic stability of
- the system equilibriutn.  Then, according to theerem 4 of Reference 23. and referring
to the Appendix in Reference 16, we compute
E=({X: (V1 (X1)+1L5Vy (X0 = 4.680125 } L))

as an estimate of the system asymptotic stability domain.

4 - As an application of the developed approach to practical stability studies of the
considered system, it is assumed that a 3.-phase short circuit fault , with successful
reclosure. oceurred near bus 4. at § % of the distance between the buses 1 and 4, The
fault is cleared, by switching off the faulted line, after 0.24 second from the fault instant,
Considering the fault and fauit-clearing conditions. the system equations (see egn. 1), are
solved . For each tims interval the Lyapunov funciion , given by eqn.26, is computed for
each subsystem . Substituting the two computed Lyapunov functions into eqn.34 , it is
fonnd that this equation is satisfied ( Vy = 4.63527 ., and V,; =0.00395 _ are
computed) at 0.450 second from the fault-clearing instant .

Fipg. 3 , shows varations of the six state variables ( the time is measured from the
_instant at which the open line is reclosed) of the first subsystem , which includes the

machines 1 and 3 .
It is obvious , refening to Fig.3 , that the system will regain its prefault ( normal } ~

condition after reclosing (the fauit is disappeared ) the faulted line.

~9
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Fig. 3 Statea of first subsystem againe me
=01 after raclosimg the open (faulted) line.

Fig, (3) States of the first subsystem against
time after reclosing the open (faulted) line,

6 Conclusions

A transient stability approach is developed, in the paper, for multi machine

" power svstems comsidering the 2-axis penerator model instead of the one-axis model ,

or the classical model , which are usually considered for transicnt stability studiess using
the direct methods . Thus each generator is described by a fourth-order dynamic model.

- 10



fu

The approach developed is applied to a 3-machine, 4-bus power system, and an estimate
for the system “asymptotic stability domain is determined. A 3-phase short circuit fauit
Jwith successful reclosure, is assumedto occurr néar one of the system buses ,and a
reclosure time for the faulted line is determined such that the system can regain its
prefault (normal) conditions. Jtis found that the stabifity approach developed is suitable
and can be easily used for practical and on-line stability studies of multimachine power
systems in which number of the machines may be more than three .
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Nomencdlature

Ppj = mechanical power delivered to ith machine

P.; = electrical power delivered by ith machine

; = rotor angle, or position of the rotor g-axis from the reference

Xdi-Xqi = direet-axys, quadrature-axis synchronous reactances

X X'gi = d-axis, ¢-axis transient reactances

Efq =exciter voltage referred to the armature circuit

Ej = voltage behind d-axds transient reactancs

E'q; , E'gj = d-axis, ¢-axis components of the voltage E;

Eq armaturc emf corresponding to the ficld current

Efdl o4 q1 E'dr" pre-transient(or steady-state)values of the voltages Efgj .E'g; and

E'q; .respectively

; = rotor speed with respect to the synchronous speed
Yjj =Y} = modulus of transfer admittance between internal nodes of ith and jth

generators
eij = 9 = phase angle of transfer admittance ':r."lj
Dj = mechamcal damping

Aj = (Dj/ Mj)= mechanical damping coefficient

Ojj = & — 5:3iN-8-N .

Gij —O,J -S,J G‘,N IN . ON = Sm - SkN Jk=1,j _
AN = Eqk E'qN v EqeEqy . A"y = ﬁ'qNﬁ'dk "E'qk Egn k=1, ]
Ay = quE P+ ﬁdlﬁd_] o A*ij = ﬁ'qjﬁ'dj_-—ﬁ'djl%’qj

Gjj = Yij s0s 9,J = transfer conductance :
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Bjj = Yjj sin Oy = transfer susceptance

T' o= difect-axis transient open-circuit ime constant of ith generator

T’qoi= quadrature-axis transient open-circuit time constant of ith generator

Kj =(de-X'dj)l Tdoj > Lj =(qu-—X‘qj)f T'qoj , J=i.N

Zy, Z3 =two functions, defined as follows:

Zofol, ¢)=min V2 max{ jo|,]d]);({a]+|d])}

Z3( o) =min { 2max ([ [] d s (Jaf+]e Fiuf)
i23[22(e,9), nls 220200, 1), ]

Z2[z( poa) 9] }

8 APPENDIX : Definition of the clements of the mairix Ry
Flements- of the sixth-order symmetric matrix Ry ( see ¢qn.33), are defined as

follows:
rlyy =2 by {A Y [QM ) s+ /M) €53 1 -1 LAM ) - M N )IA"N
G bEp -1 + WM AN By m - /M) v 1 A%51875}
tyy =~y {feM;) A% - TATN 1] -0M ) A" LGy [ € HOM )+
| + MO AN IBINT + M) ZY50A5 &5+1a%1 551
Ajg=-  [max{{ M) G5 EghlprK; i3 {lei'le iu*ZYglﬁdj &
15K b3 g 10 | £} +Ar bl +C By YiN hI1z+K1hI3sBmEqNﬂ i+
. (lfMl)th Z Yjj EJ + K hly3 EY,] M
4 =- [max { 11} 4[Yﬂ~IEqN§I1+E'cme Ep +2Y; By ij 150M;)
GiE'gil b} +Ap bl +G E‘NYm bl +Liblg BN I EgN 1M i+
- M yily £ By +Libky E Y lﬁd,tzg"u]
s = - [ max { [/ MYy, EqNGNN + Ky bl sl g iy éB]KNEq:
tlss G 1Ep }+ Ar h112+01 E; Yy Pz + Ky hlss B Egm i+
(lfMN)th L YN EJ 1
g =~ max {Lyy hlgg (1o GNI§B+YNE'(}1&-B] (UMN)GNN 1B !
blyp) + Ay blpy + G By Yy bl + Ly Wes By 1 Eg 17 +
+ (UM N) By Z Yy E‘J ]

thy = 2 Kp bl

ihs = - by [ (M) G; ﬁ'.'q; +A 1+ C E'NYW(IMi)EYijE'j]

thy =-thy [ M) Gyl Eg 1+ Ay +C BN Yﬂq+(1m-;zyij £
s = -hlyy [(1!MN)GNNﬁqN+ A+ G E P Yin - (1M ) Ty B ]
the = -bhy [ (UM ) Ony | Eqe + A1+ G Ej YiN+(1MNJEYNJ i)

iy = fagg =0 vy o= ahe = gy = = v
M3 = 2 (U T [1~(X g ~Xg B ] blsj

-~ 13 _



gy =2 W T'g0i) [1-(Xgi —X-quau](p:, /L) b3
i 2 (U TgoN)[1-(X aN - Xan ) Bay J blss

55 =
fgg = 2 (_llT’qON) [1-(XgN - ¥gN ) By ](KN_/LN)hIﬁ (35)
N-1
Itisto benoted that %, isdefinedas X  , and the following constants are given
j#i

Ryp={(1+Kr)/a ol . by =(Ky/Lj) by,
hlgs =(KN/L ) tlss
where , Ky , hlj , b33 and hlss | are arbitrary positive constants.
In eqn. 35, the elements C; and C*; are defined as
C;i =N @/M{)2+ (UMN)P -2U/M;) I/ My)cos 29N
c* = \ (K b3 2 + (Knblss)2 -2 K Ky b3 hlss cos 203y
and A, is magnitude of the maximal cigenvalue of the fourth-order symmetric matrix
Q; , whose elements are given as

*hl‘qlzz =-(1/M;j) Gj :qlz = q4s=(1/My) OnN
Q3 = ahys = Qi3 = gy =035 Cj YiN 5 @12 = qizq = 0
{36)

Definifion of the elements 7'y and Zf
The elements Z~ 1 and Z~7 . given in eqn.33. are defincd as follows :
2y =23 [Z, (bl ; hIzz)meX[(lM‘i‘Yij ij’éij aMOYN AN E g1+
+ (M) Y5l1A ula i+ (lliMN)YleA "t & N,}
P K j bl vy zllllEdle.:lj+Eq1 l_]] {ﬁqj";u* lEd_]l g i§1)
KNhISS YNj Z2 {ﬂEdﬂ@Nﬁﬁq;i w15 B éNﬁlEdjié ESiH
zp =23 (22 (Wyp:bhy) {(lml)Yu Ey i+ (MN)YN; E’N +Z 3 (WM Y5
(UMN)YNJ } ﬁ K; hI33Y|J : ‘l— KNhI SYN] ]
(37)
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