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ABSTRACT 

Combined forced ~ n d  free steady convection in a 

vertical slot of ferromagnohc flmd ln presence of 

transverse magnetic Jield I S  s t~~dted rtcnwr: cally by using 

the quasll~near~zotson tech nr que [lj. We hove obttuned 

the vcloc:ty and the iemperaturt7 drstr: S u i ~ o ~  j3r both free 

and mxed convechon wtth both smiB unu' Iarge values of 

the mg~let~.z~tiotz  parameter '!4 ", The ?resent results for 

velocity and' cemperatik re dist ribu tions are compared with 

those of m~lr~rical  and analytic remlts obtdned by 

previous authors in the C G S ~  oj" smdl '54': and goon' 

ii?~rovewsr?t has been fo~md. The v.esz;lts obtained are 

discussed and explained In detail . 



INTRODUCTION 

During the last few decades there has been an increased interest 

in studying problems originating f?om magnetic fluids in relation to the 

development of practical engineering applications such as magnetic 

fluid seal, levitation and energy conversion systems .Magnetic fluids l.) 

are synthetic fluids in the form of colloidal . Suspension of small fkrrite 

particles of 50 - 100 A" irt diameter stably dispersed in a carrier fluid 

such as kerosene. heptane or wder  [2]. Surface coaIing of each particle 

by a surfactant such as oieic acid prevents pcarticles from 

agglomer&ion. Particle concentration does not take place even in the 

presence of n magnetic field. Hysterisis is unlikely in the fluid . Now it 

has been admittable that the magetic fluid behaves as continuum and 

can be treated theoretically as a Newtonian fluid interactive with the 

externd magetic fieid . The m'agnetic force experienced in magnetic 

fluids is due to magnetic polarization of the fluid itself in contrast to the 

Lorentz force in MHD - The magnetization of magnetic fluids is. in 

general, a fiinction of the mapetic field, the temperature m d  the density 

of the fluid . Any vwiaiion of these quantities can induce the 

correspomiing spatial distribution of the body force . The temperature 

qadient is. in pailicular, of' importance in the phenomena where the .. 
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buoyancy due to the thermaf expansion is essential . Depending on the 

gradient of the magnitude o f  magnetic field, the magnetic force 

reidorces or  weakens the buoyancy effects . The heat generation in 

many practical problems cited earlier, for example, in magnetic fluid 

seal under higher rotating speed and also heating and cooling o f a  

magnetic fluid in the energy conversion systems, induce the interaction 

between temperature and fluid velocity distributions 

The most familiar example of thermo- mechanical interaction is 

th:: buoyancy induced convection. Convection can also occur in 

ferromagnetic fluids in the presence o f  a magnetic field and a 

temperature gradient the onset of convection in a horizontal layer of 

magnetic h i d  h e a d  h m  below, analogous to that of-the Rayleigh- 

Benard problem has been investigated by many authors [3-51. But thc 

study of the combined fix-ced m d  free convection in a magnetic fluid 

lias not been given much attention inspite of its applications in the 

practical problems mentioned above. 

T h e r ~ S x e  the main aim of this paper is to study the mixed 

convective Ilow in a vertical slot of ferromagnetic fluid in the presence 

of a vertical rnngrtic field ionsidsrins the t w o  cases: first, tht: 

bouncirwes xr rnnintained at the same temperature and second, the 



boundaries are maintained at different temperares  with the aim of 

understanding dte velocity and temperature distributions of 

t h e n n o m ~ e t i c  fluids. The governing equations for the velocity and 

temperature are highly nonlinear and are solved using the L 

quasiiinearization technique. The results obtained have been compared 

with corresponding results obtained earlier by analytical technique, and 

the Rung - Kutta-Gill method 161. The quasilinearization technique an 

ef% cient analytical numericai procedure fbr solving compiicatecl 

boundary value problems has been demonstrated by many authors [7-91 

This study investigates the different values of the magnetization 

parameter "A" , ad the suitable values of R,, R, and P . 

2 - BASIC EQUATIONS : 

The momentum equation for an incompressible ferromagnetic 

Boussinesq fluid with the constant viscosity [ 1 ] is : 
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where p ,u,t,P,g,~,p,M and N denote the density, velocity, time, 

pressure, acceleration due to gravity, magnetic permeability of vacuum, 

viscosity , magnetization and magnetic field respectively . 
The energy equation for an incompressible fluid [ 3 ] is: 

where c is the specific heat, T is the temperature, K, is the thermal 

conductivity and 4 is the viscous dissipation .The second term on the 

left hand side of (2) expresses the heating due to the magnetocrtlnric 

efikct of  a m q ~ e t i c  substance in the presence of a magnetic field. 

Max.vell's equations, simplified for a non-conducting fluid with no 

displacement currents, are: 

li -+ 
LVhere the magnetic flux density B is expressed as 

-+ -3 -+ 
B=,u, jM-t Hj. 
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We assume that the magnetization is aligned with the rnwetic field, but 

allows a clspendence on the magnitude oftlie magnetic field as well as 

the temperature and it is of the form 

Thc magnotic equation of stas is linearized about the magnetic field H, 

and an average ternperafilre to To, to become . 

where M, is the constant mean value of the magnetization ,X is the 

suscepiibiiity a d  a is the pyrornagnetic coefficient defined by: 

The equation of  state for a. Boussinesq fluid is 

P =  pi [I- P\T-T,)] 
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where p is the thermal expansion coefficient. 

Consider a layer of steady, Boussinesq themornapetic fluid 

flow confined between the two vertical rigid plates in the x - direction 

and the physical quantities vary with respect to y . 

Figure (1): Physical Configration of flow 

The basic equations (1) and (2), neglecting the viscous 

dissipation and with the above assumptions, take the form 



1 2 P \ = p + p , ~ . ~ - - - ~ d ~ - ~ . )  , and 

where K is the thermal diffisivity = Wp,c. These equations are solved 

using the boundary conditions a 

The boundary conditions on the velocity represent the no-slip 

conditions and that on the temperature points to the fact that the plates 
u 

are isothermally maintained at diflkrent temperatures T, and T, (T9  

Eqiiations (8) and (9) using the dimensionless quantities 

ar~d for simplicity neglecting the asterisks (*) become, 
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where 

R=R,+R, , 

P~(T,  - T,) b3 
R, = is the thermal Rayieigh number 

u K  

The corresponding boundary conditions are: 

U = O  at y = k 1  

e -1 at y = l  

8 - 1 +  rtt y=-1 

where 
- 
tl== \T2-T1 j: (T! -Tpj 



Thus equations (1 1) and (12) must be solved subject to the boundary 

conditions (13) to have the desired velocity and t emperme  profiles. C 

Due to non linearity in equation (12), analytical solutions of these 
= 

equations are difficult. However, the problem solved analytically for 

small "A" in [6] by utilizing a regular perturbation technique following 

110-1 11. To know the validity of these solutions and to find the egeects 

of large "A" on the flow, the equations (11) and (12) are solved 

numerically using the quasilinearization method, also a comparison 

between the present solution and the corresponding numerical solution 
# 

using the Rung-Kutta-Gill method [6] .  

NUMERICAL SOLUTIONS: 

The method of qu;lsilinearization is most valuable technique for 

solvitig non-linear two-point boundary value problems [8,9]. We have 

herein endeavoured to test the efficacy and reliability ofthis technique 

to lind the e&ct of- large "A" on the flow. The velocity mci 

temperaturz distributions are obtained for different values o f  ".4". We 

have drawn the velocity profjies fbr diEerent K, am4 P to see the egect 
v 

of m~gne:iz.urion: Rzyfeigh number m d  pressure. 



L in the l'.,nr,. [7,8] to the p ~ s e d  problem, we rewrite Eq.s (I l j (1-1 
-* 

and 

B , = R , + &  

B, = P  

and th:: dot derlotes difterentiation with respect to y 

Now, the quasilit~earized version of Eq.s (15) c m  be writien as the 



m d n =  o, 1, 2, ...... 

The boundary conditions for Eq. (17) are 
- 

x,nt'(-1)=0, ~ ~ ~ + ' ( - l ) = l +  B ,x,"'(l)=O, %"'(I) (18) + 

To obtain the solution of Eq. (17) starting with the assumed initial 

values, we generare a particular solution P with . 

and two homo~eneous solutioos HZ and T II,  wit!^ 

H"'(0) =(0100)T, ~ '+ ' (0 )= (0001)  

As in [lO] aU these soiutions particular and horno9eneo_eneols, are obtained 4 

by tlic fourth order Rung-Kutta method and then l h c v l y  cornhilled to 
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pivs the gcwral solution ofequations (17) sub-jest to  conditions (18) i r i  

the form . 
xn" (y )= P"+'(Y)+ c,B,""(JJ) + c,~,""(y). 42 1.) 

where C, and C, are evaluated using the conditions at y = 1. thus, one is 

Isd to eh:: 1inr;ar nlg-;braic system . 

jq& p 422) 
- - 

where the square matrix H md C , P,  the colirmn vectors of order 2, 

obtl.ainal.de from Eqs. (21) sstisQ the boundary conditions at y = I, are 
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(13) if one knows the initial profile XO . The initial approximation 

adheres to the initial consistency of the field variables are assumed to .- 
be. 

4 

where I, is the parameter that cot~trols the duration of integration and is 

to be chosen in such a way thd the bounday cotlditions at y = 1 are 

smoothly satisfied . 

DISCUSSION -4ND RESULTS 

The present sh~dy utilized to obtain the velocie md temperature 4 

distribution for rnagletic fluids in the vertical chamel . 

Tile malysis lcad to the following four cases : 



The sttldy under considerafion concentrate more on the firsf 

case. iL, . which &lines Ihe thermornagneric mechanism of-convective 

motion may bt: psifive or negative dependi~g on ihe directim of the 

constant gradient of the magtttic field. It is positive when it acts in the 

directiiln ofgravity and is negative when it acts opposite to gravity. The 

increase or decrease rn the velocity will depend respectively on > 0 

or R;, - 0. Th; situaiion R,,< 0 stabilizes the system. velocity and 

tzmpermre distributions are computed for P-0 mJ P= o . The case P = 

0. c ~ ' 1 ~ W o ~ ~ d s  to the fix con~iectinn imd P 20: corresponds to mixed 

convectlm . Tllese are discussect heicw.. 
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In the case of small "A" we obtained solutions in a few 

iterations (2 to 4) while for large "A" we obtained solutions in more 

iterations (4-18), its more large specially for P=O ,a >O and PtO, 89). 

It is fbund also that in most cases "A" did not exceed 12 specially when 

PgO . When R, = -5, R,.,,= -7, P=O, A=l or 10, h= -2 and R,= -5, 

%=7, P=(i , A= -10 , A= -2, it is found that the solution is not 

corlvergent when 35 its-rations utiked. For the purposes of comparison, 

the obtained results for small "A" are compared with those analytic and 

numerical study in [bj as depicted in the figures (2-6). It is found fiom 

the figures that there is improvement in most cases and a good 

agreement all solutions when A is very small. The velocity distribution " 

obtained for P=O and A= -1, -10 or 10 for differed values of 3, Ra and 

R m  are depicted in figures (7-9). 

We see thai the velocity of flow increases with an increase in the 

temperature di5erence between the bonndaries when the gradient of the 

magnetic field is in the direction of gravity and decreases with the 

increase of temperature difference between the boundaries when the 

gradient of the magnetic field is in the opposite direction ofgravity . 

From figures (10-I?), we observe in the case P=O, that the 

velucity increases a i d  temperature decreases with an increase in A, fbr 



Q%.,o&line~~iz~fIc32 q f i k w  M i x d  . ,.. . 
A=l md A= 10, the temperature profiles is depicted in figures (12-13) 

wherc in birii-a caes  the tennperatwe profiiss increase with the increase 

of tmpet-airtre diEereaacc between the boundaries . 

&dost values o f  the velocity and ternpermre distributions 

obtained in the 

free convection 

fouild that when 

order of curves 

case of mixed convection (PgO j are simiIar to those of  

(see f ipres (14-1 8)) .But in figures (16) and (18) it is 

P=10, with 8- I bt 3 = 0.5 and R, = 5 , b = 7 ,  the 

of both velocity and temperature are dift'erent, which 

means that the parametric values chosen here do not haye anegligible 

ecect on mixed convection . 
Finally, we have depicted the velocity profile for R, and P to 

see the effect of-rnqetization Rayleigh number and pressure when A is 

la-g?, these are shoun in frgwes (19-20) . 
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Quasilin Tech, - 
R-K-Gill meth. 
Analytic s o l .  --- --. 

F i g , ( 4 ) :  Veloc i r~  profiles f o r  Ra = 5.0, Rm = 7.0, P = -  10 A =  1.0, 
- 
$ = 9.5. 
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R-K-Gill meth. 
Analytic so l .  





A n a l y t i c  Sol. 



F l ~ . ( i ) :  V e l c c l t y  profiles f o r  A = 10.0, Rm = 7 . 3  , 
Sa = i.5, p = 0 . 0 ,  X = 1.3 





Fig.($): Velocity profiles for A = -10.0, 

R a  = 0.5,  P = 0 . 0 ,  A =  1.0 





Y- 

Fig. (11 ) : Velocity p r o f i l e s  for Ra = 5 .O,Rm = 7.0, 
- 

P = 0 . 0 ,  ), = 1.0, 8 = 0.3 
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Fig. (13 ) : Temperature profiles for 

A = 10.0 , RS = 5.0, Rm = 7 . 0 ,  P = 0.0 

X = 1.0 





! 
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Fig. ( !5) : Veloc i ty  profil2s for  A = 1.0 











F i g .  ( 20) : Vslocity p r o f i l e s  f o r  A = 1 . 0 ,  

-?a = 5 . 0 ,  A =  1.0, P = -10.0 , 
- 
d = 0 . 5  




