Mansoura Journal of Chemistry Vol. 35 (1), June, 2008.

- SYNTHESIS OE SOME NEW 5-PHENYLAZOTHIAZOLES AND PYRAZOLO [1,5-a] PYRIMIDINES

Sayed A. Ahmed
Chemistry Department, Faculty of Science, Beni-Suef. University E-Mail: skader 70@yahoo.com

(Received: 25 / 11 / 2007)

Abstract

Condensation of indole-3-carboxaldehyde (1) with thiosemicarbazide 2 afforded 1 H -indole-3-carbaldehyde thiosemicarbazone (4) which reacted with hydrazonoyl halides 7 to afford 5-arylazothiazoles 9. Pyrazolo[1,5a]pyrimidines 15 and 7-(2-naphthyl)pyrazolo[1,5a]pyrimidine 23 were obtained by reaction of sodium salt of (2-oxocycloalkylidine)methanolate 11 and 1-naphthyl-3-hydroxy-2-propene-1-one 17 with aminopyrazoles 10. Structures of the newly synthesized compounds were elucidated by elemental analysis. spectral data, alternative synthesis route whenever possible and X -ray single crystal.

INTRODUCTION

Thiazoles are common substructures of monocyclic natural products, [Shaojiang \& Jack (2005)], that exhibit a range of biological activities [Sasse et al. (2002); Cheng et al. (2002); Roy et al. (1999); Konz et al. (1997); Molnar et al. (2000) and Tang et al. (2000)] including potent immunosuppression, inhibition of bacterial protein synthesis [Cameron et al. (2002)]. Also, pyrazolo[1,5-a]pyrimidines are potent and selective antagonist of carticotropin releasing factor receptor1 with an efficacious anxiolityic profile in preclinical animal models [Wong et al. (2005)]. Preliminary tests of some pyrazolo[1,5a]pyrimidines showed strong antischistosomiasis [Yuh-Wen (1999) and Elnagdi et al. (1981)]. As a part of our program directed for development of new simple and efficient procedures for the synthesis of antimetabolites [Abdelhamid et al. (2005); Abdelhamid et al. (2006) and Zaki et al. (2006)]. We have recently reported different successful
approaches for synthesis of purine analogues and pyrimidines [Ahmed et 'al. (2007)]. Derivatives of these ring system are interesting because they have useful properties as antimetabolites in biochemical reactions. Elgemeie and Coworkers have been reported the synthesis of purine analogues and other antimetabolites by using the sodium salt of cycloalkanones [Elgemeie et al. (2002); Elgemeie \& Hussain (1994); Elgemeie \& Metwally (1999) and Rees \& Yelland (1972)].

RESULTS AND DISCUSSION

Recently an ambiguous product namely 3 -indol-3-yl-triazolin-5thione (3) was claimed [Abdel-Latif et al. (2005)] to be obtained in 80% yield from reaction of 3 -formylindole with thiosemicarbazide (Scheme 1), the identity of the product from this reaction has to be reinvestigated. Accordingly, I have studied the reaction between 3 -formylindole and thiosemicarbazide and the obtained product 4 was compared with 3. Structure 4 was confirmed by elemental analysis, spectral data, X-ray and chemical transformation. Thus compound 4 is supported by its mass spectrum which showed a molecular formula $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}\left(\mathrm{M}^{+} 218\right) .{ }^{1} \mathrm{H}$ NMR spectrum revealed signals at $\delta=7.0-7.6$ ($\mathrm{m}, 4 \mathrm{H}$, aromatic protons), $7.8\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 8.1(\mathrm{~s}, 1 \mathrm{H}$, aromatic CH$), 8.5(\mathrm{~s}, 1 \mathrm{H}$, vinyl CH$), 11.2(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH})$ and $11.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Conclusion evidence was obtained by Xray crystallographic analysis of compound 4 (Fig 1). Thus, compound 4 reacted with the appropriate hydrazonyl halides $7 \mathbf{a}$-d to give 5phenylazothiazoles 9 a-d. Compounds 9 were elucidated by elemental analysis, spectral data and alternative synthesis route. Thus. compound 9 a is supported by its mass spectrum. which showed a molecular formula $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{~S}\left(\mathrm{M}^{+} 360\right)$. ${ }^{\text {'H }} \mathrm{H}$ NMR spectrum showed signals at $\delta=3.1$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 7.3-8.6 (m, 10H, aromatic protons), 8.9 (s, 1 H , yiledinic CH), $10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$ and $11.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Also, compound 4 reacted with the appropriate halo ketone $5 \mathrm{a}-\mathrm{d}$ to give the thiazole $\mathbf{6 a - d}$, (Scheme 1). The latter, was treated with benzendiazonum chloride 8 in pyridine to give product 9 in all aspects (mp., mixed mp. and spectra).

9

Scheme 1

Fig. (1): X-ray crystallography for compound 4

Treatment of amino pyrazole 10 with sodium salt of (2-oxocycloalkylidine)-methanolates $\mathbf{1 1}$ in acetic acid containing piperidine acetate afforded 3-[4-(2-naphthyl)-1.3-thiazol-2-yl]- N -phenylpyrazolo [1,5-a] pyrimidin-2-amine derivatives 15 or isomeric structure 14 through the intermediacy 13 or 12 . The scope and limitation of our procedure for the synthesis of compound 15 was discussed. Thus it has been found that two modes of cyclization are feasible, as outlined in scheme (2). The first mode discussed that the initial nucleophilic attack by the exocyclic amino group takes place at the formyl group of compound 11 and subsequent Michael cyclization followed by elimination two moles of water leads to structures 15 . The second one discussed that the initial nucleophilic attack by endoimino group takes place at the formyl group of salt 11 followed by cyclization of exocyclic amino group of compound $\mathbf{1 0}$ with ketonic group of compound 11 leads to isomeric structures 14. Really, only one isomer was obtained. The structure of 15 was expected due to the initial attack of the exocyclic amino group of compound 10 at the unhindered formyl group of compound 11 leading to the structures of 15 being much more probable than the attack at the hindered ketonic group and this phenomena were elucidated by X-ray single crystals ${ }^{15}$. Moreover, structure of 15 was established by elemental analysis and spectral data. The compound $\mathbf{1 5 b}$ is supported by its mass spectrum which showed a molecular formula $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{~S}\left(\mathrm{M}^{+} 487\right) .{ }^{1} \mathrm{H}$ NMR spectrum showed signals at $\delta=2.1$ (quintet, $\left.6 \mathrm{H} .3 \mathrm{CH}_{2}\right), 3.2\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 7.0-8.5(\mathrm{~m}, 14 \mathrm{H}$, aromatic protons) and 10.3 (s, br., $1 \mathrm{H}, \mathrm{NH}$).

15, a, $n=0$
b, $n=1$
c, $n=2$
Scheme 2

Similar treatment of sodium salt of 1-naphthyl-3-hydroxy-2-propene-1-one 17 with aminopyrazole 10 yielded 7 -naphthyl-3-[4-(2-naphthyl)-1,3-thiazol-2-yl]- N-phenyl-pyrazolo[1,5-a]pyrimidin-2-amine 23 or isomeric structure $\mathbf{2 2}$. The scope and limitation of our procedure for the synthesis of compound 23 also was discussed by the same two modes of action. . Thus according to the above confirmation the compound 23 is much more probable than compound 22 and structure of 23 was
established on the basis of its elemental analysis and spectral data. Thus, compound 23 is supported by its mass spectrum, which showed a molecular formula $\mathrm{C}_{35} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{~S}\left(\mathrm{M}^{+} 545\right)$. ${ }^{1} \mathrm{H}$ NMR spectrum revealed multiple band at $\delta=7.0-8.7(\mathrm{~m}, 22 \mathrm{H}$, aromatic protons) and $10.9(\mathrm{~s}, \mathrm{br}$., $1 \mathrm{H}, \mathrm{NH}$)(Scheme 3).

16

19

Scheme 3

Analogously, treatment of sodium salt of 1-naphthyl-3-hydroxy-2-propene-1-one 17 with aminopyrazole 24 yielded 3-methyl-2-(methylthio)-7-(2-naphthyl)pyrazolo-[1,5-a]pyrimidine 25 (Scheme 4).

Scheme 4

Compounds 25 were established by elemental analysis and spectral data. Thus compound 25 f is supported by its mass spectrum. which showed a molecular formula $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}$ (M^{\top} 469). ${ }^{1} \mathrm{H}$ NMR spectrum showed signals at $\delta=2.6\left(\mathrm{~s} .3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.2-8.9(\mathrm{~m}, 18 \mathrm{H}$, aromatic protons), 10.1 (s, br., $1 \mathrm{H}, \mathrm{NH}$) and 10.9 (s, br., $1 \mathrm{H}, \mathrm{NH}$). All compounds obtained are now under biological evaluation studies.

EXPERIMENTAL

All melting points are uncorrected. IR spectra were obtained (KBr disk) on a Perkin Elmer 11650 FT-IR instrument. The ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Varian 400 MHz spectrometer for solutions in $\left(\mathrm{CD}_{3}\right)_{2}$ SO using TMS as an internal standard. Mass spectra were recorded on a Varian MAT 112 spectrometer. Analytical data were obtained from the Microanalytical Data Center at Cairo University. X-ray crystal data for compound 4 was performed at the national research center.

1H-indole-3-carbaldehyde thiosemicarbazone (4):

A mixture of (0.01 mol) Indole-3-carboxaldehyde 1 and (0.01 mol) thiosemicarbazide 2 in 20 ml Ethanol in presence of few drops of glacial acetic acid was refluxed for 4 h . After cooling the solid product was filtered of and recrystallized from ethanol.
4 : Colorless (85%), m. p. over $226-228^{\circ} \mathrm{C}, \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3556$, 3511, 3480, $3450\left(\mathrm{NH}_{2}\right)$, and 3434, $3054(\mathrm{NH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=$ $7.0-7.6 \mathrm{ppm}\left(\mathrm{m}, 4 \mathrm{H}\right.$, aromatic); 7.8 (s. $2 \mathrm{H} . \mathrm{NH}_{2}$); 8.1 (s, $1 \mathrm{H}, \mathrm{CH}$); 8.5 (s, 1 H , yieledinicCH); 11.2 (s. 1H, NH); 11.8 (s, 1H, NH), m/z 218 (Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}: \mathrm{C}, 55.02 ; \mathrm{H}, 4.62$; N. 25.67: S. 14.69 Found: C, $55.2 ; \mathrm{H}$, 4.8; N, 25.4; S, 14.7\%).
$1 H$-indole-3-carbaldehyde [(2E)-4-substituted-1,3-thiazol-2($5 H$)ylidene]hydrazone derivatives 6a-d:

Reaction of (0.01 mol) compound 4 with (0.01 mol) haioderivatives 5 in 25 ml ethanol. The mixture was refluxed for 20 min and the solid product was collected at the pump and recrystallized from ethanol.
6a: yellow (70%), m. p. $210^{\circ} \mathrm{C}, v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3434$ and $3054(\mathrm{NH})$, $\mathrm{m} / \mathrm{z} 256$ (Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}: \mathrm{C}, 60.91 ;$ H. $4.72 ; \mathrm{N}, 21.86 ; \mathrm{S}, 12.51 \%$ Found: C, 60.66 ; H, 4.8 ; N, 21.92; S, 12.62%).
6b: yellow (75%), m. p. $250^{\circ} \mathrm{C}, \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3534$ and $3454(\mathrm{NH})$. miz 318 (Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}: \mathrm{C}, 67.90 ; \mathrm{H} .4 .43 ; \mathrm{N}, 17.60 ; \mathrm{S}, 10.07 \%$ Found: C, $67.66 ; \mathrm{H}, 4.55$; $\mathrm{N}, 17.44, \mathrm{~S}, 10.33 \%$).
6e: yellow (80%), m. p. $275^{\circ} \mathrm{C}, \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3555$ and $3456(\mathrm{NH})$. $\mathrm{m} / \mathrm{z} 368$ (Caled for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}: \mathrm{C}, 71.71$; H, $4.38 ; \mathrm{N}, 15.21 ; \mathrm{S}, 8.70 \%$ Found: C, 71.92 ; H, 4.15; N. 15.32, S. 8.66%).
6d: red (65%), m. p. $260^{\circ} \mathrm{C}, v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3574$ and $3480(\mathrm{NH}), \mathrm{m} / \mathrm{z}$ 324 (Caled for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}_{2}$: C, $59.23 ; \mathrm{H}, 3.73 ; \mathrm{N}, 17.27 ;$ S. 19.77% Found: C, $59.63 ; \mathrm{H}, 4.00 ; \mathrm{N}, 17.52, \mathrm{~S}, 19.56 \%$).
$1 H$-indole-3-carbaldehyde [(2E)-4-methyl-5-phenylazo-1,3-thiazol$2(5 \mathrm{H})$-ylidene]hydrazone 9a-d:
Method A:- A mixture of (0.01 mol) Indole-3-carboxaldehyde thiosemicarbazone 4 and (0.01 mol) hydrazonoylhalides 7 in 20 ml Ethanol in presence of few drops of triethylamine was stirred for 1 h . The solid product was filtered of and recrystallized from ethanol.
Method B: Coupling of (0.01 mol) compounds 6 with (0.01 mol) benzendiazonium chloride 8 in 20 ml Ethanol in presence of sodium
acetate. The product was diluted by water and collected by filtration and recrystallized from ethanol.
9a: Orange ($75^{\%} \%$), m. p. $250^{\circ} \mathrm{C}, v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3534$ and $3454(\mathrm{NH})$, ${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=3.1\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), \delta=7.3-8.6(\mathrm{~m}, 10 \mathrm{H}$, aromatic) δ $=8.9(\mathrm{~s}, 1 \mathrm{H}$, yieledinic CH$), \delta=10(\mathrm{~s}, 1 \mathrm{H}$, ring NH$)$ and $\delta=11.8(\mathrm{~s}, 1 \mathrm{H}$, NH) $\mathrm{m} / \mathrm{z} 360$ (Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{~S}: \mathrm{C}, 63.31 ; \mathrm{H}, 4.47 ; \mathrm{N}, 23.32 ; \mathrm{S}, 8.90$ \% Found: C. 63.41; H. 4.66: N, 23.54; S, 9.02\%).
9b: red (66%), m. p. $230^{\circ} \mathrm{C}$, $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3500$ and $3430(\mathrm{NH}),{ }^{\mathrm{I}} \mathrm{H}$ NMR (DMSO) $\delta=7.1-8.5(\mathrm{~m}, 15 \mathrm{H}$, aromatic) $\delta=8.2(\mathrm{~s}, 1 \mathrm{H}$, yieledinic $\mathrm{CH}), \delta=10.5(\mathrm{~s}, 1 \mathrm{H}$. ring NH) and $\delta=12.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{m} / \mathrm{z} 422$ (Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{~S}: \mathrm{C}, 68.23 ; \mathrm{H}, 4.29 ; \mathrm{N}, 19.89 ; \mathrm{S}, 7.59$ \% Found: C, 68.55; H, 4.44; N, 20.1; S, 7.88 \%;
9c: yellow (80%), m. p. $295^{\circ} \mathrm{C}, \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3480$ and $3356(\mathrm{NH})$, $\mathrm{m} / \mathrm{z} 472$ (Calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{~S}: \mathrm{C}, 71.16 ; \mathrm{H}, 4.27 ; \mathrm{N} .17 .78 ; \mathrm{S}, 6.79 \%$ Found: C. 71.54; H, 4.33: N. 17.98, S, 7.22\%).
9d: red (70%) , m. p. over $300^{\circ} \mathrm{C}$. $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3584$ and 3433 $(\mathrm{NH}),(\mathrm{DMSO}) \delta=7.3-8.3(\mathrm{~m}, 13 \mathrm{H}$, aromatic) $\delta=8.0(\mathrm{~s}, 1 \mathrm{H}$, yieledinic $\mathrm{CH}), \delta=10.1(\mathrm{~s}, 1 \mathrm{H}$, ring NH$)$ and $\delta=11.4(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{m} / \mathrm{z} 428$ (Calcd for $\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{~S}_{2}$: C, 61.66: $\mathrm{H}, 3.76 ; \mathrm{N}, 19.61 ; \mathrm{S}, 17.97$ \% Found: C, 61.88; H, 3.55: N. 17.42. S, 14.65\%).

3-|4-(2-naphthyl)-1,3-thiazol-2-yl|-N-phenylpyrazolo[1,5-a]pyrimidin-2-amine derivatives 15 :

A solution of (0.01 mol) sodium salt of (2-oxocycloalkylidine)methanolates $11,(0.01 \mathrm{~mol})$ amino pyrazoles $10(0.01 \mathrm{~mol})$ and piperidine acetate (1 ml) in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ was refluxed for 15 minuets.
Acetic acid (1.5 ml) was added to the hot solution. The solid product was filtered off and recrystallized from the appropriate solvent 15a: Colorless (yield 70%), m. p. $210^{\circ} \mathrm{C}, v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3560,3433$ $(\mathrm{NH}),{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=2.73-2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.01-3.05(\mathrm{t}, 2 \mathrm{H}$, CH_{2}), 3.17-3.32 ($\mathrm{t}, 2 \mathrm{H} . \mathrm{CH}_{2}$), 7.3-8.8 (m, 14H, aromatic), $11.8(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}$, NH); $\mathrm{m} / \mathrm{z} 459$ (Calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{~S}: \mathrm{C}, 73.18 ; \mathrm{H}, 4.61 ; \mathrm{N}, 15.24 ; \mathrm{S}, 6.98$ \%. Found: C, 73.33 , H, 4.64; N, 15.55; S, 7.22 \%.
15b: Yellow (85%), m. p. $238^{\circ} \mathrm{C}, v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3447$ and 3175 (NH),) ; ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta=1.80-2.1\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.5-2.8(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.9\left(\mathrm{l}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.3-8.6(\mathrm{~m}, 14 \mathrm{H}$, aromatic), and $11.40(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}$, NH); m/z 473 (Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{~S}: \mathrm{C}, 73.55 ; \mathrm{H}, 4.90 ; \mathrm{N}, 14.79 ; \mathrm{S}, 6.77$ \% Found: C, 73.7 ; H, 4.65; N, 14.87; S, 6.52%).

15c: yellow (80%), m. p. $195^{\circ} \mathrm{C}, \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3440$ and $3104(\mathrm{NH})$, ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta=1.56\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.62-$ $2.66\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.16-3.28\left(\mathrm{t} .2 \mathrm{H} . \mathrm{CH}_{2}\right), 7.3-8.5(\mathrm{~m}, 14 \mathrm{H}$, aromatic), and $11.8(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) . \mathrm{m} / \mathrm{z} 545$ (Caicd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{~S}: \mathrm{C}, 73.89 ; \mathrm{H}$, 5.17 ; N, 14.36; S. 6.58 \%. Found: C. 73.68; H, 5.44; N, 14.22; S, 6.76 $\%)$.

Sodium salt of 3-hydroxy-1-(2-naphthyl)prop-2-ene-1-one 17:
In three nicked flask take (0.01 mol) of sodium methoxide and 20 ml ether and pour over it through separating funnel (0.01 mol) 2-acetyl naphthalene 16 with 0.01 (mol) of ethyl format with efficient stirring. The solid product was collected at the pump and used directly in the reactions.

7-naphthyl-3-[4-(2-naphthyl)-1,3-thiazol-2-yl]- N-phenylpyrazolo $11,5-a$]-pyrimidin-2-amine 23:

A solution of (0.01 mol) sodium salt of 1-naphthyl-3-hydroxy-2-propene-1-one 17, (0.01 mol), amino pyrazoles $10(0.01 \mathrm{~mol})$ and piperidine acetate (1 ml) in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ was refluxed for 10 minuets. Acetic acid (1.5 ml) was added to the hot solution. The solid product was filtered off and recrystallized from ethanol.
23: yellow (yield 75%). m. p. $260{ }^{\circ} \mathrm{C}, v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3540,3453$ (NH), 'H NMR (DMSO) $\delta=7.1-8.8$ (m, 22H, aromatic), $10.25(\mathrm{~s}, \mathrm{br}$, $1 \mathrm{H}, \mathrm{NH}$); m/z 545 (Calcd for $\mathrm{C}_{35} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{~S}: \mathrm{C} .77 .04 ; \mathrm{H}, 4.25 ; \mathrm{N}, 12.83 ; \mathrm{S}$, 5.88 \%. Found: C, 77.32 ; H. 4.64; N, 12.66; S, 6.02 \%.

7-(2-naphthyl)pyrazolo[1,5-a]pyrimidine derivatives $25 \mathrm{a}-\mathrm{m}$

A solution of Sodium salt of 3-hydroxy-1-(2-naphthyl)prop-2-ene-1-one $17(0.01 \mathrm{~mol})$, amino pyrazoles $24(0.01 \mathrm{~mol})$ and piperidine acetate (1 ml) in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ was refluxed for 10 minuets. Acetic acid $(1.5 \mathrm{ml})$ was added to the hot solution. The solid product was filtered off and recrystallized from the appropriate solvent.
25a: Colorless (yield 60%), m. p. $188{ }^{\circ} \mathrm{C}, v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3560,3433$ (NH), 1670 (CO); ${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=2.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), \delta=7.1-8.5$ ($\mathrm{m}, 14 \mathrm{H}$, aromatic) and $\delta=11.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z} 410$ (Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 70.22 ;$ H. $4.42 ; \mathrm{N}, 13.65$; S. 7.81%. Found: C, 70.45 ; H, 4.64: N. 13.13; S. 7.54%.
25b: Colorless (yield 60%). m. p. $190{ }^{\circ} \mathrm{C}, v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3566,3450$ $(\mathrm{NH}), 1650(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=2.55\left(\mathrm{t} .2 \mathrm{H}, \mathrm{CH}_{2}\right), \delta=3.55(\mathrm{q}$.
$\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), \delta=7.3-8.6(\mathrm{~m}, 14 \mathrm{H}$, aromatic) and $\delta=11.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z}$ 424 (Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 70.73$; $\mathrm{H}, 4.75$; $\mathrm{N}, 13.20$; S, 7.55%. Found: C, $70.52 ; \mathrm{H}, 4.62$; N, 13.01; S, 7.12%.
25c: Colorless (yield 66%), m. p. $235^{\circ} \mathrm{C}, v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3540,3450$ $(\mathrm{NH}), 1655(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=7.1-9.5(\mathrm{~m}, 19 \mathrm{H}$, aromatic), $\delta=$ $10.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), \delta=11.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z} 455$ (Caled for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$: C, 76.47; H, 4.65; N. 15.37; \%. Found: C, 76.21; H, 4.33; N, 15.25; \%.
25d: Colorless (yield 70%), m. p. $200^{\circ} \mathrm{C}, v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3500,3410$ $(\mathrm{NH}), 1640(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR $(\mathrm{DMSO}) ~ \delta=2.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), \delta=7.1-9.0$ (m, 13H, aromatic), $\delta=10.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), \mathrm{m} / \mathrm{z} 424$ (Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 70.73 ; \mathrm{H}, 4.75 ; \mathrm{N}, 13.20 ; \mathrm{S} 7.55 \%$. Found: C. $70.47 ; \mathrm{H}$, 4.90; N. 13.55; S 7.72 \%.

25e: Colorless (yield 55%), m. p. $195^{\circ} \mathrm{C}, v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3544,3421$ $(\mathrm{NH}), 1665(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=2.33\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), \delta=2.52(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), \delta=3.65\left(\mathrm{q}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), \delta=7.2-8.6(\mathrm{~m}, 13 \mathrm{H}$, aromatic $)$ and $\delta=$ 11.0 (s, 1H. NH): m/z 438 (Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 71.21 ; \mathrm{H}, 5.06 ; \mathrm{N}$, 12.78; S. 7.31 \%. Found: C. $71.65 ; \mathrm{H}, 5.46$; N, 12.54; S. 7.22%.

25f: Colorless (yield 70%), m. p. $240^{\circ} \mathrm{C}, v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3550,3470$ (NH). $1660(\mathrm{CO}){ }^{\prime}{ }^{\prime} \mathrm{H}$ NMR (DMSO) $\delta=2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), \delta=7.0-9.0$ $(\mathrm{m}, 18 \mathrm{H}$, aromatic $) . \delta=9.6(\mathrm{~s} .1 \mathrm{H}, \mathrm{NH}), \delta=10.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z} 469$ (Caled for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C} .76 .74 ; \mathrm{H}, 4.94 ; \mathrm{N}, 14.92$; \%. Found: C, 76.54; H, 4.66; N. 14.74; \%.
25g: Colorless (yield 65%), m. p. $180^{\circ} \mathrm{C}, v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3565.3414$ $(\mathrm{NH}), 1655(\mathrm{CO})$; ${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), \delta=7.0-8.5$ ($\mathrm{m}, 13 \mathrm{H}$, aromatic) and $\delta=10.33$ ($\mathrm{s} .1 \mathrm{H} . \mathrm{NH}$); m/z 444 (Calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{OS}: \mathrm{C} .64 .79 ; \mathrm{H} .3 .85 ; \mathrm{N}, 12.59 ; \mathrm{S}, 7.21 \%$. Found: C, 64.54; H. 3.63; N, 12.44; S. 7.54%.

25h: Colorless (yield 75%). m. p. $225^{\circ} \mathrm{C}, v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3545,3420$ $(\mathrm{NH}), 1645(\mathrm{CO}):{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=2.42\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), \delta=3.50(\mathrm{q}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), \delta=7.0-8.5(\mathrm{~m}, 13 \mathrm{H}$, aromatic); and $\delta=10.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z}$ 458 (Caled for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{OS}: \mathrm{C}, 65.42 ; \mathrm{H}, 4.17$; N, 12.21; S, 6.99%. Found: C, $65.66 ; \mathrm{H}, 4.63 ; \mathrm{N}, 12.45 ; \mathrm{S}, 6.66 \%$.
25i: Colorless (yield 75%), m. p. $250^{\circ} \mathrm{C}, 3523,3430,3410(\mathrm{NH}), 1630$ (CO)
${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=7.0-9.2(\mathrm{~m}, 18 \mathrm{H}$, aromatic), $\delta=10.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), \delta$ $=10.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z} 489$ (Calcd for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{ClN}_{5} \mathrm{O}: \mathrm{C}, 71.09 ; \mathrm{H}, 4.11$; N, 14.29 \%. Found: C, $70.87 ; H, 4.24 ; \mathrm{N}, 14.53 \%$.

25j: Colorless (yield 70%), m. p. $245^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=2.2$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $\delta=7.2-8.9\left(\mathrm{~m}, 14 \mathrm{H}\right.$, aromatic); $\mathrm{m} / \mathrm{z} 335$ (Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3}$: C, 82.36 ; H, 5.11 ; N, 12.53; \%. Found: C, 82.55 ; H, 5.34; N, 12.47; \%.
25k: Colorless (yield 71%), m. p. $220^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=7.0-8.5$ (m, 14 H , aromatic); m/z 355 (Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{C}, 74.26 ; \mathrm{H}, 3.97 ; \mathrm{N}$, 11.81; \%. Found: C, 74.65 ; H, 4.21 ; N. 11.65%.

25I: Colorless (yield 65%), m. p. $190^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=7.0-8.8$ (m. 15 H , aromatic); $\mathrm{m} / \mathrm{z} 321$ (Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{3}: \mathrm{C}, 82.22 ; \mathrm{H}, 4.70 ; \mathrm{N}$, 13.08; \%. Found: C, 82.00; H, 4.64; N, 13.11 \%.

25m: Colorless (yield 60%), m. p. $198^{\circ} \mathrm{C}, ~{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta=2.44$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $\delta=7.1-8.6$ (m, 14H, aromatic); m/z 335 (Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3}: \mathrm{C}, 82.36 ; \mathrm{H}, 5.11 ; \mathrm{N}, 12.53 \%$. Found: C, $82.22 ; \mathrm{H}, 5.33 ; \mathrm{N}$, 12.23%.

ACKNOWLEDGMENT

I wish to thank Prof. G. E. H. EIgemeie. Prof A.O. Abdelhameid, and Prof. A. H. H. Elghandour for valuable discussions.

REFERENCES

Abdelhamid, A. O; Elghandour, A. H. H; Ahmed, S. A; and Zaki, Y. H.: Journal of Sulfur Chemistry, 26, 405-410, (2005).

Abdelhamid, A. O; Elghandour, A. H. H; Ahmed, S. A; and Zaki, Y. H.; J. Heterocyclic Chem.; 43, 249, (2006).

Abdel-Latif, N.A; El-Shihi, T.H.; Eslam. I.E.: and El-Sawy, E.R., Egypt. Pharm. J. 4, 313-329. (2005).

Ahmed, S. A; H; Hussein, A. M; Elghandour. A. H; Hozayen, W. G. M; Elghandour, A. H. and Abdelhamid A. O.; J. Heterocyclic Chem.; 44. 803, (2007).

Cameron, D. M.., Thompson, J.; March, P. E.: Dahlberg, A. E., J. Mol. Biol. 319, 27, (2002).

Cheng, Y-Q, Tang, G and Shen B. J. of Bacteriology, 184, 7013-7024. (2002).

Elgemeie. G. H̦.; and Hussain, B. A. W.; Tetrahedron 50, 199-204, (1994).

Elgemeie. G. H.; and Metwally, N. H.; J. Chem. Research, 208-209. (1999).

Elgemeie. G. H.: Elghandour, A, H., El-Zanate. A. M.; and Mahmoud. A. M., Acta Cryst. E58, 01293-01295. (2002).

Elnagdi, M. H.; Zayed, E. M.; Khalifa, M. E.; Ghozlan, S. A. Monatsh. Chem. 112. 245.(1981).

Konz, D. Klens. A.. Schorgendorfer, K., and Marahiel., Chem., Biol., 4. 927-937. (1997).

Molnar. L.. et al., Chem. Biol. 7, 97-109. (2000).
Rees. C. W. and Yelland. M.: J. Chem. Soc. Perkin Trans I, 77, (1972).
Roy. R. S.. Gehring. A. M.. Belsham. P. J., and Walsh. C. T.. Nat. Prod. Rep.. 16. 249-263. (1999).

Sasse, F.: Steeinmetz. H.: Schupp. T.; Petersen, F.; Memmert, K.; Hofmann. H.: Hueusser, C.; Brinkmann, V.; Von Matt. P.; Hofle, G.; Reichenbach. H., j. Antibiot., 55, 543, (2002).

Shaojiang. D. and Jack. T. Organic Lett., 7, 299-301, (2005).
Tang, L.. Shah. S.. Chung, L., Carney. J., Katz. L., Khosla, C, and Julien, B.. Science 287, 640-642, (2000).

Wong. H: Lehman-Mckeeman. L D: Grubb, M. F; Grossman S. J; Bhaskaran V. M; Solon E. G; Shen, H. S; Gerson R. J; Car, B. D; Zhao. B; Gemzik B.: Toxicol Sci. 84 232-242. (2005).

Yuh-Wen Ho, J Chin. Chem. Soc. 46, 6. (1999).
Zaki, Y. H: Ahmed. S. A; Hussein. A. M; and Abdelhamid A. O.; Phosphorous Sulfur and Silicon.; 181. 825-837. (2006).

قسم الكيمياء - كلِّة العلو م - جامعةُ بنى سويف

هاليد (v) لينتّج ه-اريل الزوثيازول (9).

(Y) Y
 مع امينوبير ازول ((1)
و لقد اثبات التُر اكيبب الكيمائية المركبات المشُبدة الجبيدة باستخدام التّحليل العنصرى و الطيفى و الاشتعة السينية للبلورة الو احذذ بالاضـافة الى استخدام الطرّق الكيميائية كلما ادكن
ذلك.

