Mansoura University
Faculty of Engineering
Dept. of Electrical Eng.

3rd year Electrical Engineering
Students

Power electronics (1):

Dr. Khaled Abo-Al-Ez

Second Semester

2013/2014 Time: (1:30) hr-

Full Mark: 45 Marks

19/5/2014

Final Exam: Answer the following questions

Question (1):

- a. List the characteristics of an ideal power electronics switch.
- b. Derive the power losses in a transistor switch: Conduction losses, and Switching losses. Use needed diagrams and waveforms to support your answer.

c. A transistor switch with the following characteristics controls power to a 25 kW load:

I _{RATED}	V _{RATED}	I _{LEAKAGE}	V _{CE(SAT)}	t _{sw(ON)}	t _{SW(OFF)}	Source voltage Vs	Load resistance RL	Switching frequency	Duty cycle (d)
50 A	500 V	1 mA	1.5 V	1.5 µs	3 μs	500 V	10 Ω	100 Hz	50%

Find:

- 1. On-state and off-state power losses.
- 2. Maximum power loss during turn-on.
- 3. Energy losses during turn-on and turn-off.
- 4. On-state and off-state energy losses.
- 5. Total energy loss.
- 6. Average power loss.

[15] Mark

Question (2):

- a. Sketch the schematic of a single phase full wave centre tapped transformer uncontrolled rectifier with a resistive (R) load, and an inductive (RL) load and explain the operation.
- b. A single phase full wave centre tapped transformer uncontrolled rectifier is supplied from a 50 V source. If the load resistance is 100 Ω. Find:
 - 1. The average load voltage and the average load current.
 - 2. The maximum value & the RMS value of the load current.
 - 3. The peak inverse voltage (PIV) rating of a diode.
 - 4. The rectifier efficiency.
 - 5. Calculate the: form factor, pulse number, ripple factor, conduction angle, and the power factor.

[15] Mark

Question (3):

- a. Sketch the schematic of a single phase half wave controlled rectifier with a resistive (R) load, and an inductive (RL) load and explain the operation.
- b. A single phase half wave controlled rectifier is supplied from a 120 V source. Calculate the firing angle necessary to deliver 150 W of power to a load resistance of 10 Ω.
- c. Sketch the schematic of a single phase full wave controlled bridge rectifier with a freewheeling diode that supplies an inductive (RL) load. If the supply voltage is 120 V and the resistive portion of the load is 10 C. Given that the delay angle is 30°. Find:
 - 1. The average load voltage and the average load current.
 - 2. The maximum value & the RMS value of the load current.
 - 3. The average current in each SCR & the average current in the FWD.

[15] Mark

Mansoura University Faculty of Engineering Electrical Engineering Department Full Degree 45

3d YearExa.
Power Electronic.Exam.
Time Allowed 1.5 hours
19/5/2014

Answer the following:

- 1- Sketch a collector steered base triggering circuit. Show the triggering waveforms, and explain the circuit functions. (10)
- 2- Sketch the logic symbol and the timing diagram for JK flip flop. Explain how JK flip flop differs from SC and D flip flops. (10)
- 3- Discus the current and voltage requirements of a LED. Sketch the circuit symbol for the device and show how it employed in a seven segment numerical display.(10)
- 4- Sketch the whole circuits initiated from a counter of diode matrix for driving a seven segment display. Explain the operation of the circuit and identify the segment of the input display that are energized for each decimal.(15)