CONCENTRATIONS OF NICKEL, LEAD AND CADMIUM IN RICE PLANT AS AFFECTED BY FARMYARD MANURE Hammad, S. A.*; E.S. Naeem** and Howida B. El-habet ** * Soil Sci. Dept. of Agric., Mansoura Univ., Egypt. **Rice Research and training Center Sakha, Kafr EL-Sheikh

ABSTRACT

The concentrations of cadmium (Cd²⁺), nickel (Ni²⁺) and Lead (Pb²⁺) in different organs of rice plant were investigated by field experiments. Data showed that the highest yield of rice grain was recorded by the application of 21.42 tons farmyard manure (FYM) plus 357 kg urea.ha⁻¹ as compared with the other treatments. Roots accumulated more Pb²⁺, Ni²⁺ and Cd²⁺ than straw and grains at harvest stage of rice growth. Pb²⁺, Ni²⁺ and Cd²⁺ concentration in rice plant organs (root, straw and grain) increased with increasing levels of FYM either alone or in combined with urea compared with the control. Pb²⁺ concentrations in straw do not exceed the critical limits of pollution with FYM added to the soil either separated or combined with urea. However, rice grains were slightly polluted at 21.42 tons FYM plus 238 kg urea.ha⁻¹ and 21.42 tons FYM plus 357 kg urea.ha⁻¹. Ni²⁺ concentration in rice grain and straw do not exceed the critical limits of Cd²⁺ at all addition levels of FYM added to the soil whether levels separated or integrated with urea, however Cd²⁺ concentration in rice grain was polluted at 21.42 tons FYM plus 357 kg urea.ha⁻¹. Integration of 14.28 tons FYM plus 357 kg urea.ha⁻¹ and 21.42 tons FYM plus 238 kg urea.ha⁻¹ and 21.42 tons FYM plus 238 kg urea.ha⁻¹ and 21.42 tons FYM plus 357 kg urea.ha⁻¹. Integration of 14.28 tons FYM plus 357 kg urea.ha⁻¹ and 21.42 tons FYM plus 238 kg urea.ha⁻¹ and 21.42 tons FYM urea.ha⁻¹. Integration of 14.28 tons FYM plus 238 kg urea.ha⁻¹ do not exceed the critical limits of the concentration of Pb²⁺, Ni²⁺ and Cd²⁺ in different organs of rice plant.

INTRODUCTION

All trace elements are toxic and in small quantities may are essential for plant growth (Fe, Mn, Mo and Zn). However excessive quantities will cause undesirable accumulation in plant tissue and growth reduction. Lead, Nickel and Cadmium are metals which have been found to have deleterious effects on both plant metabolism and human (Allinson and Dzilo 1981). Lead cause changes in the permeability of cell membrane and reactions of sulphydral groups (-SH) (Kabata Pendias and Pendias 1992). There is no evidence of an essential role of Ni^{2+} in plant metabolism, although the reported beneficial effects of Ni^{2+} on plant growth have stimulated speculation that this metal may have some function (Mengel and Kirkby 1987). Cadmium is phytotoxic, as it can interfere with photosynthetic and respiratory activities, mineral nutrition, enzymatic activities, membrane functions and hormone balance (Chen, 2000). The critical concentrations of Pb²⁺, Ni²⁺ and Cd²⁺ in plant ranged between 10 to 20 mg Pb . kg⁻¹, 10 to 100 mg Ni. kg⁻¹ and 5 to 30 mg Cd²⁺. kg⁻¹ dry matter respectively (Mengel and Kirkby 1987 and Alloway 1995). Based on the levels of Pb and Cd2+ in polished rice grains, Kanso et al. (2000) divided lowland rice areas into three categories : Pb²⁺ < 0.5 and Cd^{2+} <0.12 ppm unpolluted grains, Pb^{2+} 0.5- 1 and Cd^{2+} 0.12-0.24 ppm slightly polluted grains and Pb $^{2+}$ > 1 ppm and Cd $^{+2}$ >0.24 ppm polluted

Hammad, S. A. et al.

grains. The food chain is considered the main tract for transfer of trace elements to humans. The excess of Pb²⁺ may cause several health effects; nervous system disorder, hematologic effects, kidney disease, hypertension. The Ni²⁺ excess caused mainly gastric, liver and kidney defects, neurological effects, emphysema and lung cancer. Cd2+ is one of the most toxic metals to humans, which cause cardiomyopathy, pneumonitis and osteomalacia (Kabata pendias and mukherjee 2007).

The objective of this study was to examine the effect of FYM under irrigation with wastewater on:

1) Rice grain yield.

2)Concentration of Pb²⁺, Ni²⁺ and Cd²⁺ in different rice plant organs at harvest (Roots, Straw, Whole grain, husk and white grain).

MATERIALS AND METHODS

Two field experiments were conducted at Rice Research & Training Center (RRTC) at the farm of Kafr El-Sheikh using rice plant (Oryza Sativa), Giza178 variety during 2007 and 2008 seasons. The present work at the first experiment aimed to study the effect of waste water and Farm yard manure on 1) Rice grain yield and 2) Concentration of Pb2+, Ni2+ and Cd2+ in different rice plant organs at harvest (Roots, Straw, Whole grain, husk and white grain). Soil sample was taken and subjected to chemical analysis followed the standard procedures by cottenie et al., (1979) and page et al., (1982) and the results were presented in Table 1.

Farm yard manure (FYM) incorporated with soil before transplanting and urea was added in two splits, 2/3 before flooding and 1/3 one month after transplanting. Plots were fertilized with super phosphate (15%) at the rate of 100 kg.fed⁻¹ before flooding. The experimental design system of layout was randomized complete block with four replications .The treatments at the first experiment were as follows:

- 1) Control denoted as N_0F_0 .
- 2) 7.14 tons farm yard manure (FYM) ha^{-1} denoted as N₀F₁.
- 3) 14.28 tons (FYM) ha^{-1} denoted as N₀F₂.
- 4) 21.42 tons (FYM) ha^{-1} denoted as N_0F_3 .

- 4) 21.42 tons (FYM) .ha ⁻¹ denoted as N_0F_3 . 5) 109.48 kg N. ha⁻¹ (238 Kg urea.fed⁻¹) denoted as N_1F_0 . 6) 109.48 kg N. ha⁻¹ + 7.14 tons (FYM) denoted as N_1F_1 . 7) 109.48 kg N. ha⁻¹ + 14.28 tons (FYM) denoted as N1F₂. 8) 109.48 kg N. ha⁻¹ + 21.42 tons (FYM) denoted as N1F3. 9) 164.22 kg N. ha⁻¹ (357 Kg urea.fed⁻¹) denoted as N_2F_0 . 10) 164.22 kg N. ha⁻¹ + 7.14 tons (FYM) denoted as N_2F_1 . 11) 164.22 kg N. ha⁻¹ + 14.28 tons (FYM) denoted as N_2F_2 . 12) 164.22 kg N. ha⁻¹ + 21.42 tons (FYM) denoted as N_2F_3 . The nursery was fertilized with recommended dose of

The nursery was fertilized with recommended dose of N, P and Zn. It's irrigated with drainage water (wastewater + agricultural drainage water). Plants in each plot were harvested for grain yield. Plants were left for drying about three days, and then threshed. The weight of grains was recorded and moisture content was measured then grains weight was calibrated to 14

J. Soil Sci. and Agric. Eng., Mansoura Univ., Vol. 2 (2), February, 2011

percent moisture basis. Water irrigation was sampled then analyzed and the values were 6.23, 6.3 ppm Pb^{2+} and 0.439, 0.45ppm Ni^{2+} and 0.032, 0.037 ppm Cd^{2+} in 2007 and 2008 seasons respectively. All plant samples were oven dried at 70 c for 48 hours then grounded and kept in plastic pages for analysis and determined using the model of atomic absorption. The analysis of FYM showed that the Pb^{2+} was 45 and 46.1 ppm with 9.2 and 9.23 ppm Ni^{2+} and 3.8 and 3.82 ppm Cd^{2+} in season 2007 and 2008 respectively.

Table 1: Some mechanical, chemical characteristics of the used soil in season 2007 and 2008.

Tested characteristics	Value(2007)	Value(2008)
Particle size distribution		
Sand %	27.3	13.20
Silt %	28.64	32.00
Clay %	44.06	55.80
Texture class	Clay	Clay
pH (1:2.5 soil water suspension)	8.10	8.19
Ec _e (soil paste extracted at 25 C° dS.m ⁻¹)	3.00	3.10
OM (organic matter) %	1.65	1.60
Soluble cations, meq.l ⁻¹ (soil paste):		
Ca ⁺⁺	9.50	10.00
Mg ⁺⁺	3.94	3.98
K ⁺	1.76	1.80
Na ⁺	14.8	15.20
Soluble anions, meq.I ⁻¹ (soil paste):		
	-	-
HCO ₃ ⁻	6.00	6.75
CI	8.30	8.44
SO ₄	15.70	15.79
Available Pb mg/kg soil	1.60	1.63
Available Ni mg/kg soil	1.12	1.10
Available Cd mg/kg soil	0.015	0.15
Aqua- Regia extracted elements (Total)		
Pb mg/kg soil	21.3	21.7
Ni mg/kg soil	26.4	26.2
Cd mg/kg soil	8.10	8.15

RESULTS AND DISCUSSION

Yield and yield attributes: Grain and straw yield:

Data in Tables 2 and 3 shows the effect of farmyard manure (FYM) and urea treatments and their combinations on grain and straw yield of Giza178 rice variety during 2007 and 2008 seasons. Data showed that, there is a significant increase in yield under all treatments over the control. The highest yield of rice grain was recorded by applications of 21.42 tons FYM plus 357 kg urea.ha⁻¹ without significant differences with using 21.42 tons FYM plus 238 kg urea. ha⁻¹ but the lowest yield was observed under the treatment which received no fertilizer. The increase in grain yield with the combined use of both those source is advantageous and substantial amount

of inorganic N can be saved. These mainly could be attributed to that the combined use of FYM and chemical fertilizer increase nutrients availability for plant through their growth stages. Confirmed these results (Cooke 1977 and Hammad *et al.*, 2006).

Data illustrated that grain yield increased up to 21.42 tons FYM plus 357 kg urea.ha⁻¹. Data reported also, that 21.42 tons FYM alone and 21.42 tons FYM.ha⁻¹ plus 238 kg urea. ha⁻¹ gave higher grain yield as compared to 357 kg urea fed⁻¹ alone but any addition from urea to FYM gave higher grain yield than that observed with FYM alone at the same treatment. The straw yield followed the similar trend as that of rice grain.

Table 2: Means of grain yield and straw yield (kg. ha ⁻¹) as affected by the
applications of farmyard manure (FYM) and urea treatments at
harvest in 2007 season

Treatments	Urea FYM		Grain	% increase	Straw	% increase			
rreatments	kg. ha ⁻¹	t. ha ⁻¹	kg. ha⁻¹	or decrease	kg. ha⁻¹	or decrease			
N_0F_0	0	0	6913.9 h	-	8181.25 h	-			
N_0F_1	0	7.14	8901.20 f	28.74	9939.59 g	21.49			
N_0F_2	0	14.28	9282.0 e	38.12	11314.99 e	38.30			
N_0F_3	0	21.42	11197.7 b	61.96	11824.31 d	44.52			
N_1F_0	238	0	8146.74 g	17.83	9936.5 g	21.45			
N_1F_1	238	7.14	10072.16 d	45.67	11638.2 d	42.25			
N_1F_2	238	14.28	10805.2 c	56.28	12292.7 c	50.25			
N ₁ F ₃	238	21.42	11501.35 ab	66.36	12619.95b	54.25			
N_2F_0	357	0	10231.62 d	34.25	10680.25 f	30.54			
N_2F_1	357	7.14	10692.15 c	54.64	11650.1 d	42.40			
N_2F_2	357	14.28	11278.10 ab	63.12	12608.05 b	54.10			
N_2F_3	357	21.42	11596.55 a	68.08	13163.185 a	60.89			

Table 3: Means of grain yield and straw yield (kg. ha⁻¹) as affected by the applications of farmyard manure (FYM) and urea treatments at harvest in 2008 season.

narvest in 2006 season.									
Treatments	Urea	FYM	Grain	% increase	Straw	% increase			
Treatments	kg. ha ⁻¹	t. ha⁻¹	kg. ha⁻¹	or decrease	kg. ha⁻¹	or decrease			
N_0F_0	0	0	7057.48 g	-	8330h	-			
N_0F_1	0	7.14	9111.42 d	29.10	10124.52g	21.54			
N_0F_2	0	14.28	9440.65 c	33.76	11608.04e	39.51			
N_0F_3	0	21.42	11641.36 b	64.95	11840.5 d	42.30			
N_1F_0	238	0	8540.22 f	21.00	9983.29 g	19.98			
N_1F_1	238	7.14	10422.80c	47.68	1078.14 de	41.51			
N_1F_2	238	14.28	10933.72b	54.92	12344.25c	48.19			
N₁F₃	238	21.42	11696.10a	65.72	12669.25 b	52.09			
N_2F_0	357	0	103337.91c	46.48	10700.48f	28.45			
N_2F_1	357	7.14	10845.66b	53.67	11686.58de	40.29			
N_2F_2	357	14.28	11499.35a	62.93	12669.52b	52.09			
N_2F_3	357	21.42	11798.44a	67.17	13224.85a	58.76			

Lead (Pb²⁺) concentration in rice plant organs:

High Pb concentration has found to inhibit seed germination, stomata opening, shoot transpiration, CO_2 uptake, apparent photosynthesis, and photorespiration in plant (Poskuta *et al*, 1987).

Data in Tables 4 and 5 Show Pb²⁺ concentrations in rice plant organs as affected by the application of FYM and urea treatments and their combinations.

The obtained results showed that generally, Pb²⁺ concentrations in organs of rice plant progressively increased with increase FYM addition levels to the soil either alone or in combinations with urea as compared with the control. These results are in harmony with those obtained by Hala (2005) who observed that the organic manures led to more significantly positive increase in the concentrations of Pb²⁺, Ni²⁺ and Cd²⁺ in roots, shoots and grain of corn plant. The highest values of Pb²⁺ concentrations were attained at 21.42 tons FYM plus 357 kg urea ha⁻¹. Means of Pb²⁺ concentrations were 4 folds approximately for roots with compared to the rice straw at all treatments. While means of Pb²⁺ concentrations were 10 folds approximately for straw compared to grains at FYM added alone or FYM plus 238 or 357 kg urea.ha⁻¹.

The critical levels of Pb²⁺ concentration ranged between 30 to 300 ppm (Alloway 1995). Data in Tables 5 and 6 also, indicated that Pb2+ concentration in rice straw do not exceed the safety limits (less than 30 ppm) of Pb²⁺ at all addition levels of FYM added to the soil either alone or in combinations with urea. Concerning to, the chemical analysis of rice grain, data show that the ${\rm Pb}^{2+}$ concentrations increased with increasing levels of FYM added to the soil whether, alone or integrations with urea in whole grain, husk and white grain, according to, Pb^{2+} limits in rice grains which, reported by (Kasno, 2000). It can be notice that Pb²⁺ concentration in white rice grains was slightly polluted at 21.42 tons FYM plus either 238 or 357 kg urea.ha treatments, while Pb concentration in rice grains were unpolluted at all addition levels of FYM added to the soil alone except the treatment of 21.42 ton FYM .fed⁻¹. These results agreed with the findings of Kashem and Singh (2001). It is clear from the data these treatments of FYM under this condition did not reach the critical levels of Pb concentrations in rice straw and grains. This may be due to organic matter is known to increase the capacity of the soils to adsorb Pb (Hala 2005). Data also, illustrated that the highest values of Pb concentrations were recorded with rice husk as compared to Whole and white grains at all different levels of FYM added to the soil either alone or in combinations with urea.

Nickel (Ni²⁺) concentration in rice plant organs:

There is no evidence of an essential role of Ni²⁺ in plant metabolism, although the reported beneficial effects of Ni²⁺ on plant growth have stimulated speculation that this metal may have some function in plant.

Hammad, S. A. et al.

Tracting Urea FYM Basta Other Whole Units White								
Treatments	kg.ha ⁻¹		Roots	Straw	grain	Husk	grain	
N₀F₀	0	0	30.17	6.42	0.556	0.783	0.318	
N₀F₁	0	7.14	37.12	8.50	0.753	0.925	0.413	
N_0F_2	0	14.28	50.45	12.40	1.226	1.873	0.489	
N₀F₃	0	21.42	61.55	14.55	1.426	2.353	1.030	
Mean			44.82	10.46	0.990	1.480	0.562	
N₁F₀	238	0	32.45	6.80	0.605	0.809	0.403	
N ₁ F ₁	238	7.14	42.92	10.02	0.878	1.253	0.467	
N_1F_2	238 ⁻	14.28	54.97	12.90	1.428	1.986	0.523	
N ₁ F ₃	238 2	21.42	68.37	15.57	1.536	2.330	1.250	
Mean			49.67	11.32	1.110	1.590	0.656	
N_2F_0	357 (0	31.07	6.44	0.570	0.789	0.630	
N ₂ F ₁	357	7.14	54.07	12.37	1.160	1.735	0.506	
N_2F_2	357 ⁻	14.28	58.95	13.60	1.350	1.838	0.817	
N_2F_3	357 2	21.42	68.40	16.50	1.505	2.417	1.430	
Mean			53.12	12.22	1.460	1.690	0.778	

Table 4: the Lead (Pb) concentration (ppm) in rice plant organs as affected by the application of farmyard manure (FYM) and urea treatments at harvest stage in 2007 season.

Table 5: Lead ((Pb) concentration	ion	(ppm) in ri	ce plant o	organs a	as aff	ected
by th	ne application	of	farmyard	manure	(FYM)	and	urea
treatm	nents at harves	t sta	age in 2008	season.			

Treatments	Urea kg.ha ⁻¹	FYM t.ha ⁻¹	Roots	Straw	Whole grain	Husk	White grain
N₀F₀	0	0	31.50	6.84	0.563	0.791	0.325
N₀F₁	0	7.14	39.90	9.30	0.768	0.953	0.426
N₀F₂	0	14.28	54.40	12.90	1.435	1.898	0.496
N₀F₃	0	21.42	63.60	15.66	1.473	2.452	1.110
Mean			47.35	11.17	1.05	1.52	0.589
N₁F₀	238	0	33.40	7.10	0.618	0.829	0.423
N₁F₁	238	7.14	45.90	11.12	0.891	1.355	0.478
N_1F_2	238	14.28	56.80	13.80	1.453	2.001	0.650
N₁F₃	238	21.42	71.80	17.0	1.582	2.410	1.310
Mean			51.79	12.25	1.15	1.66	0.715
N_2F_0	357	0	34.50	7.30	0.625	0.835	0.652
N ₂ F ₁	357	7.14	57.30	14.0	1.225	1.863	0.662
N_2F_2	357	14.28	62.81	15.60	1.481	1.921	0.845
N_2F_3	357	21.42	73.80	17.80	1.601	2.513	1.501
Mean			57.10	13.67	1.233	1.783	0.915

 Ni^{2+} is an essential component of the enzyme urease and stimulation effects of Ni^{2+} on the nitrification and mineralization of N compounds (Kabata – pendias and pendias 2000). Data in Tables 6 and 7 represent Ni^{2+} concentration in rice plant organs through different stages as affected by the application of FYM and urea treatments and their integrations. Results stated that, Ni^{2+} concentration in organs of plant progressively increased with increasing levels of FYM added either alone or in integrations with urea compared with the control. This could be attributed to:

- Soil organic matter complexes Ni²⁺ and soluble organic compounds can increase the solubility and consequent increase the available Ni²⁺ and its absorption by plant
- 2) Nickel is readily translocated through xylem as negatively charged organic matter complex (Sarivastava and Gupata 1996).

The highest values of Ni2+ concentrations were recorded at 21.14 tons FYM plus 357 kg urea .ha⁻¹. Concerning to Ni concentration in rice plant organs, data also, state that roots accumulated more Ni²⁺ than straw and grains. These results agreed with the findings of Srivastava and Gupata (1996) who found that most of observed Ni accumulates in the roots. The concentration of Ni²⁺ is much lower in leaves, stems and seeds than roots. This finding might be attributed to the fact that plant roots are the first organs in contact with the toxic metal solute (Marchiol et al., 1996). Means of Ni²⁺ concentrations were 3.6 folds approximately for roots as compared to straw at all treatments. The respective values of mean Ni²⁺ concentrations were about 6 folds for straw as compared to with grains at all treatments. Relating to, the chemical analysis of rice grain indicated that the Ni²⁺ concentration increased with increasing levels of FYM added to the soil either alone or in combinations with urea in whole grain, husk and white grain. These results are in harmony with those obtained by Hala (2005). The rice husk analyzed was higher in concentration of Ni²⁺ compared with whole and weight grains at all addition levels of FYM. This means that, heavy metals concentrated in husk than grains. These results agreed with the findings of Sarkunan et al (1991) and Howida (2004). Ni²⁺ concentrations in rice plant did not exceed the critical limits at all treatments. Also, the results are in harmony with those obtain by Chino (1981) who found that the toxic of Ni²⁺ concentrations in the foliage was found to be 20 to 50 ppm in rice.

Table 6: The nickel (Ni) concentration (ppm) in rice plant organs as
affected by the application of farm yard manure (FYM) and
urea treatments at harvest stage in 2007 season.

	Urea kg.ha ⁻¹	FYM t.ha⁻¹	Roots	Straw	Whole grain	Husk	White grain
N₀F₀	0	0	34.87	8.67	1.31	1.60	0.356
N₀F₁	0	7.14	42.07	11.14	1.85	1.93	0.489
N_0F_2	0	14.28	52.07	13.22	2.25	2.68	0.612
N₀F₃	0	21.42	61.32	16.57	2.80	2.90	0.859
Mean		-	47.58	12.40	2.07	2.27	0.579
N₁F₀	238	0	42.82	10.95	1.83	1.92	0.396
N ₁ F ₁	238	7.14	48.32	12.65	2.28	2.60	0.501
N ₁ F ₂	238	14.28	56.80	15.45	2.72	3.00	0.790
N₁F₃	238	21.42	6352	17.50	2.98	3.23	0.983
Mean			52.86	14.40	2.45	2.68	0.667
N ₂ F ₀	357	0	45.12	11.44	1.87	2.11	0.480
N ₂ F ₁	357	7.14	51.15	14.12	2.41	2.80	0587
N_2F_2	357	14.28	63.05	18.05	2.97	3.25	0580
N_2F_3	357	21.42	69.67	20.07	3.27	3.63	1.150
Mean			57.24	15.92	2.63	2.94	0.770

Hammad, S. A. et al.

area treatments at harvest stage in 2000 season.									
Treatments	Urea kg.ha ⁻¹	FYM t.ha⁻¹	Roots	Straw	Whole grain	Husk	White grain		
N₀F₀	0	0	35.80	8.92	1.34	1.67	0.362		
N₀F₁	0	7.14	45.07	12.80	1.90	2.07	0.490		
N_0F_2	0	14.28	55.80	14.80	2.31	2.78	0.663		
N₀F₃	0	21.42	65.70	18.00	2.91	3.08	0.890		
Mean			50.59	13.63	2.31	2.27	0.601		
N₁F₀	238	0	43.80	11.80	1.80	1.88	0.382		
N₁F₁	238	7.14	50.80	13.75	2.35	2.81	0.563		
N ₁ F ₂	238	14.28	58.99	16.17	2.89	3.19	0.8.01		
N₁F₃	238	21.42	66.80	18.90	2.97	3.25	0.993		
Mean			55.09	15.15	2.502	2.78	0.684		
N_2F_0	357	0	46.12	11.80	1.80	2.15	0.450		
N ₂ F ₁	357	7.14	53.52	15.10	2.52	2.91	0.601		
N_2F_2	357	14.28	63.80	17.83	3.12	3.53	0.631		
N ₂ F ₃	357	21.42	71.80	21.90	3.27	3.63	1.150		
Mean			58.81	16.65	2.67	3.055	0.708		

Table 7: The nickel (Ni) concentration (ppm) in rice plant organs as affected by the application of farm yard manure (FYM) and urea treatments at harvest stage in 2008 season.

Cadmium (Cd²⁺) concentration in rice plant organs:

Regular consumption of plants containing 3 ppm Cd^{2+} can poison man and animal, it interferes with and other proteins. In livestock, it accumulates in kidneys, spleen and liver (Tuker *et al.*, 2003). Data in Tables 8 and 9 represent Cd^{2+} concentration in rice plant organs through different stages as affected by the application of FYM and urea treatment and their combinations. Results indicated that Cd^{2+} concentration in plant organs progressively increased with increment FYM levels added to the soil whether separated or combined with urea at all stages as compared to the control. This is may be due to:

1- The content of FYM from Cd²⁺

2-The mobility in alkaline soil due to the formation of complexes or metal chelats, 3-The plant uptake of Cd²⁺ may be indepented of the pH (Kitagishi and Yamane 1981). Also, Srivastava and Gupta (1996) who found that the fixation of Cd by organic matter is operative under the acidic condition (soil pH 4-6) but the solubilization of Cd²⁺ by organic matter occurs in the range of the soil pH 7-8. The highest values of Cd²⁺ concentration were achieved at 9 tons FYM plus 357 kg urea ha⁻¹. As compare the Cd²⁺ concentrations in different plant organs, data in Tables 9 and 10 revealed that roots accumulated higher Cd²⁺ level than shoots, straw and grain at all stages. These results agreed with findings of Kabata- Pendias and Pendias (2000) and Kabata-pendias and Mukherjee (2007) who found that usually Cd2+ concentration is the highest in roots and decreases towards the top plants. The obtained results also, showed that mean Cd2+ concentration was approximately 3 and 10 folds for roots as compared to straw and grains respectively at all treatments at harvest stage. The normal range of Cd2+ concentration in plants was 0.10 to 2.40 ppm, while the critical level ranged between 5 to 30 ppm (Alloway 1995). The obtained data also, illustrated that Cd²⁺ concentration in rice straw don't exceed the critical levels of Cd²⁺

at all addition levels of FYM added to the soil whether, separated or in integrated with urea accordance with limits as mentioned before. The chemical analysis of rice grain showed that the concentration of Cd²⁺ increased with increasing levels of FYM added separated or combined with urea in whole grains, husk and white grains.

In Japan, the maximum level of Cd^{2+} in unpolished rice grain is 1.00 mg Cd. kg⁻¹. In Taiwan, it is 0.50 mg Cd. kg⁻¹ while in mainland China the maximum permitted level is 0.40 mg Cd. kg⁻¹ in polished rice grain (Chen ,2000).

According to, Cd limits in rice grain as mentioned before and limits reported by (Kasno 2000).It can be observed that Cd concentration in rice grain was polluted at 21.14 tons FYM plus 238 kg urea.ha⁻¹ (0.530 ppm), 14.28 tons FYM plus 357 kg urea.ha⁻¹ (0.701 ppm) and 21.14 tons plus 357 kg urea.ha⁻¹ (1.10 ppm).

Results also, showed that the rice husk analyzed was higher in concentration of Cd^{2+} compared with whole and white grain at all addition levels of FYM. This means that, Cd^{2+} concentrated in husk than grains. These results agreed with findings of Sarkunan *et al* (1991) and Howida (2004). In fact, it is clear that the integration of 14.28 tons FYM plus 238 kg urea.ha⁻¹ was safe for all heavy metals under this study.

Table 8: The cadmium (Cd ²⁺⁾ concentration (ppm) in rice plant organs as
affected by the application of farmyard manure (FYM) and urea
treatments at harvest stage in 2007 season.

Treatments	Urea kg.ha ⁻¹	FYM t.ha ^{⁻1}	Roots	Straw	Whole grain	Husk	White grain
N₀F₀	0	0	4.93	1.60	0.450	0.730	0.275
N₀F₁	0	7.14	5.52	1.93	0.560	0.810	0.367
N_0F_2	0	14.28	6.19	2.15	0.640	0.920	0.400
N₀F₃	0	21.42	7.30	2.50	0.750	1.100	0.480
Mean			5.98	2.04	0.600	0.890	0.380
N₁F₀	238	0	5.10	1.67	0.480	0.750	0.289
N ₁ F ₁	238	7.14	6.60	2.10	0.590	0.890	0.392
N_1F_2	238	14.28	7.73	2.60	0.740	0.993	0480
N ₁ F ₃	238	21.42	9.00	3.30	0.921	1.230	0.530
Mean			7.10	2.41	0.682	0.960	0.554
N_2F_0	357	0	5.80	1.83	0.545	0.810	0.320
N ₂ F ₁	357	7.14	7.50	2.50	0.760	0.920	0.520
N_2F_2	357	14.28	8.60	2.90	0.900	1.200	0.701
N_2F_3	357	21.42	10.00	3.50	1.200	1.560	1.100
Mean			7.97	2.65	0.826	1.120	0.652

5						
Urea kg.ha ⁻¹	FYM t.ha ^{⁻1}	Roots	Straw	Whole grain	Husk	White grain
0	0	5.07	1.65	0.460	0.750	0.280
0	7.14	5.83	2.07	0.575	0.895	0.403
0	14.28	6.45	2.29	0.715	0.992	0.445
0	21.42	7.62	2.57	0.900	1.250	0.523
		6.242	2.145	0.662	0.971	0.412
238	0	5.22	1.69	0.507	0.781	0.297
238	7.14	6.85	2.23	0.620	0.931	0.408
238	14.28	7.91	2.73	0.781	1.071	0.510
238	21.42	9.45	3.41	0.981	1.29	0.553
		7.75	2.51	0.722	1.018	0.442
357	0	5.84	1.90	0.563	0.890	0.367
357	7.14	7.71	2.63	0.791	0.995	0.534
357	14.28	9.00	2.98	0.987	1.301	0.762
357	21.42	11.50	3.65	1.295	1.617	1.15
		8.51	2.79	0.909	1.190	0.703
	kg.ha ⁻¹ 0 0 0 238 238 238 238 238 238 238 238 238 238	kg.ha ⁻¹ t.ha ⁻¹ 0 0 0 7.14 0 14.28 0 21.42 238 0 238 7.14 238 7.14 238 14.28 238 21.42 357 0 357 7.14 357 14.28	kg.ha ⁻¹ t.ha ⁻¹ Roots 0 0 5.07 0 7.14 5.83 0 14.28 6.45 0 21.42 7.62 238 0 5.22 238 7.14 6.85 238 14.28 7.91 238 21.42 9.45 7.75 357 0 5.84 357 7.14 7.71 357 14.28 9.00 357 21.42 11.50	Urea kg.ha ⁻¹ FYM t.ha ⁻¹ Roots Straw 0 0 5.07 1.65 0 7.14 5.83 2.07 0 14.28 6.45 2.29 0 21.42 7.62 2.57 6.242 2.145 238 0 5.22 1.69 238 7.14 6.85 2.23 238 238 14.28 7.91 2.73 238 21.42 9.45 3.41 7.75 2.51 357 0 5.84 1.90 357 7.14 7.71 2.63 357 14.28 9.00 2.98 357 21.42 11.50 3.65 3.65 3.65	Urea kg.ha ⁻¹ FYM t.ha ⁻¹ Roots Straw Whole grain 0 0 5.07 1.65 0.460 0 7.14 5.83 2.07 0.575 0 14.28 6.45 2.29 0.715 0 21.42 7.62 2.57 0.900 6.242 2.145 0.662 238 0 5.22 1.69 0.507 238 14.28 7.91 2.73 0.781 238 21.42 9.45 3.41 0.981 7.75 2.51 0.722 357 0 5.84 1.90 0.563 357 14.28 9.00 2.98 0.987 3.57 21.42 11.50 3.65 1.295	Urea kg.ha ⁻¹ FYM t.ha ⁻¹ Roots Straw Whole grain Husk 0 0 5.07 1.65 0.460 0.750 0 7.14 5.83 2.07 0.575 0.895 0 14.28 6.45 2.29 0.715 0.992 0 21.42 7.62 2.57 0.900 1.250 6.242 2.145 0.662 0.971 238 0 5.22 1.69 0.507 0.781 238 7.14 6.85 2.23 0.620 0.931 238 14.28 7.91 2.73 0.781 1.071 238 21.42 9.45 3.41 0.981 1.29 7.75 2.51 0.722 1.018 357 0 5.84 1.90 0.563 0.890 357 7.14 7.71 2.63 0.791 0.995 357 14.28 9.00 2.98 0.987 1.301

Table 9: The cadmium (Cd²⁺⁾ concentration (ppm) in rice plant organs as affected by the application of farmyard manure (FYM) and urea treatments at harvest stage in 2008.

Conclusion

Generally Pb^{2+} , Ni ²⁺ and Cd²⁺ concentrations in rice plant organs progressively increased with increasing the levels of FYM either alone or integrated with urea as compared with the control. Rice grain was polluted with lead and cadmium at higher levels of fertilizer, so it is important to use the recommendation level of FYM and urea to avoid the contamination such as 14.28 tons FYM plus 238 kg urea.ha⁻¹.

REFERENCES

- Alloway, B. J. 1995. Heavy metals in soils, 2nd ed. Blackie Academic and profeional, New York.
- Allinson. D. W. and C. Dzialo.1981.The influence of lead, cadmium, and nickel on the growth of ryegrass and oats. Plant and soil. (62) 81-89.
- Chen .Z. S. 2000 .Relationship between heavy metal concentration in soils of Taiwan and uptake by crops. Department of Agricultural chemistry. National Taiwan University. Taipei 106. Taiwan, ROC.
- Chino, M. 1981. Adorption, desorption, potential and selective distribution of heavy metals in selected soils of Japan. In Heavy metals pollution in soils of Japan. K. Kitagishi and Yamane, eds. Japan Scientific Press, Tokyo.
- Cooke, G.W. 1977. The role of organic matter in managing soils for higher crop yields. Areview of the experimental evidence. Pages 53-64 in the proceedings of the international seminar on soil environment and fertility management in intensive agriculture. The Soci. Of the Sci. soil and manure. Japan (Nippon Adj Yohirye Gakkail, Tokoy).
- Cottenie, A.; R.Camerbynck; M. Verloo and A. Dhaere. 1979. Fractionation and determination of trace elements in plants. Soils and Sediments. Pure Appl. Chem. 52: 145-153.

- Hala Kandil, A.H.2005. Impact of agricultural wastes compost on some heavy metals content in soil and plant. Ph.D. Thesis Fac of Agric., Cairo. Univ., Egypt
- Hammad, S.A; K.H.EL-Hamdi; S.A.Ghanem and E.S.Naeem 2006. Grain yield of lowland (Oriza Sativa) as influenced by integrated use of urea and rice straw fertilizer. J.Agric. Sci. Mansoura Univ., 31(6) : 3993-3999.
- Howida El-Habet. B. I. 2004. Effect of aerobic and anaerobic condition in polluted soil on heavy metals content of some crops. M. Sc. Thesis, Fac. of Agric. Minufiya. Univ., Egypt.
- Kabata- Pendias, A. and H. Pendisa 1992. Trace elements in soils and plants. Crs press, inc. Boca Raton, Florida.
- Kabata- Pendias, A. and H. Pendias 2000. Trace elements in soils and plants. Crs press, inc. Boca Raton London New York Washington, D.c.
- Kabata- Pendias.A and A.B. Mukherjee. 2007. Trace Elements from soil to Human. CRC press, Inc. Library of Congress control Number 2007920909.
- Kashem, M.A. and B.R. Singh. 2001. Metal availability in contaminated soils :
 1. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrients cycling in Agroecosystems 61: 247-255.
- Kasno,A.Sri. Adiningsih, Sulaeman dan subowo.2000. Total area of intensive ppady rice contaminated by lead and cadmium Kawarang and Bekasi district, west java, Indonesia. Jurnal iimu Tanah dan lingkungan 3.2: 25-32 (in Bahasia Indonesia).
- Kitagish,K and I. Yamane., Eds.1981.Heavy metals pollution in soils of Japan, Japan science society Press, Tokyo. 302
- Marchiol, L.L. Leita, M. Martine A. Peressotti and G.Zerbi.1996. Physiological responses of two soybean cltivars to cadmium.J.Environ. Qual, 25: 562-566.
- Mengel, K. and E. A. Kirkby 1987. Principles of plant nutrition. Han Booded. By Dr. Konard Mengel.
- Page, A. L., R.H. Miller and D.R. Keeney.1982. Methods of soil Analysis part 2. Amer. Sco. Agric. Inc. Madison.
- Poskuta, J.W; E parys and E. Romarovskav. 1987. The effect of lead on the gaseous exchange and photosynthetic carbon metabolism of pea seedlings. Acta Soc.Pol. 56: 127-137.
- Sarkunan, v. A. Kmisra and p.k. Nayar. 1991. Effect of cadmium, nickel and copper on yield and metal content in rice (Oriza sativa). 28, 459-462.
- Srivastava, P.C; and U.C. Gupta. 1996. Trace elements in crop production. Science Pulishers, Inc. 10 water street # 310 Lebanon, NH 03766, USA.
- Tuker, M.R., D.H. Hardy and C.E. Catherine. 2003. Heavy metals in North Carolina soils: occurrence and significance. Raleigh (NC) North Carolina Department of Agricultural and consumer services, Agronomic Division. ZP.

تركيزات عناصر النيكل و الرصاص والكادميوم في نبات الارزتاثرا بالسماد البلدى. سامى عبد الحميد حماد* ، السيد سعد نعيم**و هويدا بيومى الهابط** *قسم علوم الأراضي- كلية الزراعة-جامعة المنصورة **مركز البحوث والتدريب في الأرز- سخا- كفرالشيخ

أجريت تجربتين حقليتين في موسمي ٢٠٠٧ و٢٠٠٨ في مزرعة مركز البحوث والتدريب في الأرز – سخا – كفر الشيخ مستخدماً صنف الأرز جيزة ١٧٨ وذلك بهدف دراسة تأثير استخدام السماد البلدي والأسمدة الكيماوية (اليوريا) على تركيزات كلا من الكادميوم والرصاص والنيكل في الاجزاء المختلفة لنبات الارز. أوضحت النتائج ان اعلى محصول تم الحصول عليه عند استخدام ٢١.٤ طن سماد بلدي+ ٣٥٧ كجم يوريا/ هكتار بالمقارنة بالمعاملات الاخري. اظهرت النتائج ان كميات الرصاص والنيكل والكادميوم المتجمعة في الجذور اعلي منه في القش والحبوب. زادت تركيزات الرصاص والنيكل والكادميوم في اجزاء نبات الارز (الجذور والقش والحبوب) مع زيادة مستويات السماد البلدي سواء كان بمفرده او مخلوط مع اليوريا بالمقارنة بمعاملة الكنترول. تركيزات الرصاص في القش لم تتجاوز النسب المسموح بها سواء اضيف السماد البلدي بمفرده اومخلوطا مع اليوريا بينما حبوب الارز كانت ملوثة الى حد ما مع استخدام ٢١.٤٢ طن سماد بلدي + ٣٥٧ و ٢٣٨ كجم يوريا /هكتار لم تظهر اي تلوث بالنيكل مع المعدلات المرتفعة من الاسمدة. تركيزات الكادميوم في القش لم تتجاوز النسب المسموح بها سواء اضيف السماد البلدي بمفرده اومخلوط امع اليوريا ولكن مع حبوب الارز ظهرت بعض التلوثات مع كلا من ٢١.٤٢ طن سماد بلدي + ٢٣٨ كجم يوريا / هكتار، ١٤.٢٨ طن سماد بلدي + ٣٥٧ كجم يوريا /هكتار و٢١.٤٢ طن سماد بلدي. استخدام ١٤.٢٨ طن سماد بلدي + ٢٣٨ كجم يوريا /هكتار لم يؤدي الي تجاوز الحدود المسموح بها لتركيزات كلا من الرصاص والنيكل والكادميوم في اجزاء نبات الارز المختلفة.

قام بتحكيم البحث

- أد / محمد يحيى سيد العرقان
- د / عبد العظيم الطنطاوى بدوى
- كلية الزراعة جامعة المنصورة مركز البحوث الزراعية