Menoufia University
Faculty of Engineering
Depart. of Prod. Eng. & Mech. Design
Final Exam (Prod. & Design).

Subject: Theory of Machines
Diploma level (500)/PRE517
Academic year: 2014/2015
Time allowed: 3 Hours

Date: 10/06/2015

Assume any required data.

Answer the following questions:

Q1:

<u>A:</u> Define the path generation types.

<u>B: Data:</u> Free choice for three prescribed positions of coupler point 'P' link $r_p = AP$ considering $r_p = 4.5$ cm, $R_1 = 3.5$ cm and $\theta_1 = 0.0^\circ$.

Required:

- 1. Construct 4b planar mechanism by graphical synthesis method.
- 2. Study this mechanism (name, γ 's, ϕ_4 and T_E).
- 3. Show how to reconstruct such mechanism in condition that p₁p₂p₃ produces straight portion.

Q2:

A: Define function generation problem?

<u>B: Data:</u> Four prescribed positions for the output link R_4 " θ_4 " and their correspond for the input link

 R_2 " θ_2 " are as:

Position	1	2	3	4
θ_2°	45	84	128	163
$\theta_4^{\ c}$	74	92	117	135

Required:

- 1. Construct 4h planar mechanism using graphical synthesis method.
- 2. Study this mechanism (name, γ 's, ϕ_4 and T_R).
- 3. Reconstruct such mechanism so that $T_R = 0.8$ and find γ 's.

Q3: Data:

The mechanism shown in Fig. (1) where:

 $R_3 = AB = 4R_2$, $R_p = AP$ (coupler point link) = R_2 , $y_c = y_p$ at $\theta_2 = 0^\circ$, θ_3 (at initial and final positions of slider B) = 80.406° and 84.26° respectively, $\omega_2 = constant = 5 \text{ rad/s (R.H.D.)}$.

Required:

- 1. Find R_2 , e and S_t of slider B.
- 2. Compute R₄, x_p at $\theta_2 = 0^o$ and $x_c = 1.5$ e
- 3. Find θ_2 at the extreme positions of sliders B and C.
- 4. Compute stroke of slider C and its velocity and acceleration at mid-stroke.

04:

A: Explain, with help of sketches, the following terms:

- 1. Main causes of machine vibration
- 2. Amplitude of vibration
- 3. Frequency
- 4. Waveform
- 5. Spectrum

<u>B:</u> Dimensions, section, and material properties of the members of an elastic four-bar mechanism are found in figure (2) and table (1). Investigate the natural frequencies of the mechanism.

Fig. (2)

Table (1)

	Crank (2)	Coupler (3)	Follower (4)
Length (Li)	10.8 cm	27.94 cm	27.05 cm
Area (Ai)	1.077 cm^2	0.406 cm^2	0.406 cm^2
Area moment of inertia (Ii)	0.01616 cm^4	$8.674 \times 10^{-4} \text{ cm}^4$	$8.674 \times 10^{-4} \text{ cm}^4$
Distance between ground pivots(L1)	25.4 cm		
Weight of bearing assembly ($W2 = W3$)	0.42 N		
Modulus of elasticity (E)	$7.1 \times 10^7 \text{ KPa}$		
Weight density(ρ)	0.0266 N/cm^3		

Good Luck

pr. Dr. S. Elshakery

Dr. S. Hassan