Menoufia University Faculty of Electronic Engineering Dept. Industrial Electronics and Control Eng. Course: Electrical Engineering Course Field: Specialization Requirements Academic Level: First Year, 1st Semester Academic Year: 2019 / 2020 Course Code: ACE 115 Final Term Exam Date: 16/1/2020 Exam Type: Written - C No. of Exam Pages: 4 No. of Exam Questions: 6 Exam Marks: 60 Marks Exam Time: 3 Hours From 10:00 AM to 1:00 PM ## Answer the following questions: ## *Part* – 1: <u>Question – 1: Choose the correct answer for the following questions:</u> [9 Marks] [1] The total charge that passes through a resistor in a period of 1.5 h, when a current of 500 mA flows is: a) 750 C b) 92.59 μC c) 2700 C d) 0.75 C 121 An aluminum conductor has a resistance of 10 Ω at 20 $^{\circ}$ C and a temperature coefficient of 0.0039 per degree Celsius. The resistance of the conductor at 100 °C is: a) 6.56Ω b) 13.12 Ω c) 131.2 Ω d) 26. 24 Ω [3] A current of 100 mA is supplied from a battery until a charge of 350 C is taken from the battery. The time for which the current must flow is: a) 3.5 sec b) 58.33 min c) 41.66 min d) 9.72 hours [4] Suppose a power amplifier delivers 400 W to its speaker system. If the power loss is 509 W, then its efficiency is: a) 78.58% b) 44% c) 127.25% d) 88.7 d) 88.71% [5] An electric heater takes a current of 15 A when connected to a 120 V supply. The conductance of the heater is: a) 0.1 S b) 0.08 S c) 0.125 S d) 0.75 S [6] A motor drives a pump through a gearbox as depicted in Figure 1. Power input to the motor is 1200 W. The output of the gearbox (and hence the input to the pump) is: a) 1920 W b) 192 kW c) 756 W d) 7.56 MW Figure 1 Page 1 of 4 [7] For the non-ideal current source connected to a load resistance R_L : a) $I_L = I$ b) $I_L < I$ c) $I_L > I$ d) $I_L = \infty$ [8] A 12 V battery is to be used to establish an electric field strength of 750 V/m between two copper plates. The required distance between the plates is: a) 9000 m b) 1.6 cm c) 62.5 m d) 16 cm [9] A field strength of 1000 V/m exists between two metal plates 1 cm apart in a vacuum. The applied emf on an electron passing between plates is: b) Put True $(\sqrt{\ })$ or False (\times) signs for the following expressions: [3 Marks] 1. The kinetic energy possessed by an object is dependent upon mass and speed. 2. In linear resistors, the current isn't directly proportional to the applied voltage.)) 3. Voltage sources of different potentials should be connected in parallel. 4. The internal resistance of the ammeter must be very large for less loading effect.) 5. $I_{OC} = 0$ for both the voltage source and the current source at open-circuit load. [9 Marks] 6. Mesh (Loop) equations for network analysis depends on Kirchhoff's current law.) <u>Ouestion - 2:</u> Consider the resistive network shown in Figure 2, Determine the current through the resistance R_3 . <u>Question -3:</u> For the network shown in Figure 3, find the Norton's equivalent of the circuit external to load resistor R_L . Use the equivalent circuit to determine I_L when $R_L = 0$, $R_L =$ $2 k\Omega$, and $R_L = 5 k\Omega$. *Part* – 2: <u>Question – 4:</u> For the ac circuit shown in Figure 4, the capacitor is of $C = 250 \,\mu\text{F}$ and the shown coil part impedance is given as $10 + j \, 31.4 \,\Omega$. If the ac input voltage is given as $V_s = 7 \sin(100\pi t)$, - a. Calculate the circuit current - b. Calculate the voltage V_R, V_L and V_C - c. Determine the power factor - d. Find the resonance frequency - e. Draw the phasor diagram for the circuit - f. Sketch the relation between the circuit impedance Z versus the frequency f - g. If the coil is considered a pure conductance, determine the value of the average power at resonance frequency. Figure 4 [10 Marks] [9 Marks] <u>Ouestion -5</u>: A generator supplies power to an electric heater, an inductive element, and a capacitor as in the ac circuit shown in Figure 5, - a. Find P and Q for each load. - b. Find P_T and Q_T supplied by the generator. - c. Draw the power triangle for the combined loads. - d. Find the current supplied by the generator. Question - 6: - a) Sketch the instantaneous sinusoidal waveforms of voltage V, current I and power P for: - i. A purely resistive circuit. - ii. A purely inductive circuit. - iii. A purely capacitive circuit. [3 Marks] b) For the circuit shown in Figure 6, if the supply voltage is given as $V_s = 117 \sin(120\pi t)$, Calculate the complex power and correct the power factor to be unity. [7 Marks] With best wishes