Mansoura University
Faculty of Engineering
Electronics and Communications Engineering Department

Digital Circuits 1 - Term Exam	Exam Time: 3 hours
1st year Communications - 2nd Term	Total Marks: 70 Marks
Exam Date: June 04, 2014	

Important Instructions:

1 This exam contains:
20 Questions (Fill the blanks with pre-selected words) --> Write ONLY your answers in the answer booklet (10 Marks; 0.5 Mark each)
15 MCQs (4 choices each) --> Mark your answer selection in the MCQ answer sheet in the middle of the answer booklet Q1-Q15 (15 Marks; 1 Mark each)
20 Questions (True/False) --> Mark your answer selection in the MCQ answer sheet in the middle of the answer booklet Q16-Q35 (10 Marks; 0.5 Mark each) Mark (1) for TRUE answer and mark (2) for FLASE answer.

2 Questions (Regular technical questions) --> Write your answers in the booklet (35 Marks)

My best wishes to YOU!
Dr. Sameh Rehan

Note: This exam has questions on both sides of the questions' sheets.

Digital Circuits 1 - Term 2 Exam June 04, 2014 1st year Commuications engineering students

Answer the following 15 MCQs in the MCQ answer sheet in the answer booklet: (15 Marks)

Q1 A circuit that converts an analog waveform to a digital signal is commonly called a(n) \qquad .
(1) PLD
(3) DAC
(2) ADC
(4) CAD

Q2 A circuit that is most likely to be found in a CD player is $a(n)$ \qquad -
(1) digital-to-analog converter
(2) programmable logic device

Q3 When using negative logic \qquad .
(1) $\mathrm{HIGH}=1$ and LOW $=0$
(3) $\mathrm{HIGH}=0$ and $\mathrm{LOW}=1$
(2) $\mathrm{HIGH}=0$ and LOW $=-1$
(4) $\mathrm{LOW}=-.1$ and $\mathrm{HIGH}=1$

Q4 The math symbol for time of transition from LOW to HIGHH is \qquad .
(3) t_{W}
(4) t_{f}

Q5 The math symbol for time of transition from HIGH to LOW is \qquad .
(1) t_{r}
(3) t_{w}
(2) T
(4) t_{f}

Q6 For a negative-logic pulse, the leading edge is the \qquad .
(1) LOW-to-HIGH transition
(3) rising edge
(2) positive-going edge

Q7 The output of an AND gate is LOW \qquad .
(1) only when all inputs are LOW
(4) negative-s,oing edge
(2) only when all inputs are HIGH

Q8 The output of an OR gate is LOW \qquad .
(1) only when all inputs are LOW
(3) only when all inputs are HIGH
(2) whenever any input is HIGH
\qquad and \qquad ـ.
Q9 Two kinds of data selectors are d
\qquad (3) multiplexers, clemultiplexers
(1) encoders, decoders
(4) adders, subtractors
(2) comparators, registers

Q10 Which converts data from a serial to a parallel form?
(1) Comparator
(2) Demultiplexer
(3) Encoder
(4) Multiplexer

Q11 This is the timing diagram for a 2-input \qquad gate.
(1) AND
(2) NAND
(3) OR
(4) NOR
(3) when at lea'st one input is LOW
(4) no answer is correct

Digital Circuits 1-Term 2 Exam	June 04, 2014
1st year Commuications engineering students	page 3

Q13 This is the truth table for $a(n)$ \qquad -.
(1) NAND
(2) NOR
(3) AND
(4) OR

Q14 This is the truth table for $a(n)$ \qquad .
(1) NAND
(2) NOR
(3) AND
(4) OR

Q15 This is the truth table for $a(n)$ \qquad .
(1) NAND
(2) NOR
(3) AND
(4) OR

A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

A	B	X
0	0	1
0	1	0
1	0	0
1	1	0

A	B	X
0	0	1
0	1	1
1	0	1
1	1	0

Answer the following 20 TRUE/FALSE questions in the dedicated MCQ answer sheet

Q16-Q35 in the answer booklet:
(10 Marks; 0.5 Mark each)

Q16 6 binary digits are required to count to decimal 100.
Q17 In binary addition, $10+11=21$.
Q18 In binary multiplication, $11 \times 11=1001$.
Q19 In binary division, $1000 \div 0100=100$.
Q20 In binary subtraction, 101-11 $=10$.
Q21 The decimal number system consists of the digits 0-10.
Q22 The largest numerical value that is possible with a 4-bit binary number is 16 .
Q23 The largest single digit in the octal numbering system is 7 .
Q24 A circle, or bubble, on a distinctive-shape logic symbol indicates a logic inversion.
Q25 The OR gate performs as switches wired in series.

Q26 The output of a 2-input XNOR gate is 1 when the inputs are equal, or identical.
Q27 The output of an AND gate is HIGH only when all inputs are HIGH.
Q28 When the inputs to a 3-input OR gate are 001 , the output is 1 .
Q29 When the inputs to a 3 -input NAND gate are 001 , the output is 1 .
Q30 When the iriputs to a 3-input NOR gate are 001, the output is 1.
Q31 The XOR gate can be used to add two bits.
Q32 DeMorgan's theorem states that:

$$
\overline{X Y}=X+Y
$$

Q33 The commutative law of Boolean addition states that $A+B=A, B$.
Q34 The Karnaugh maps provide `cookbook` approaches to simplifying Boolean expressions.
Q35 When grouping cells in a Karnaugh map, the cells must be combined in groups of 2's.

Digital Circuits 1 - Term 2 Exam	June 04, 2014
1st year Commuications engineering students	page 4

Fill the blanks (by selecting from the listed set of words) in the answer booklet for the following questions: (NOT, OR, AND, NAND, NOR, XOR, XNOR, rise time, fall time, amplitude, transition time, period, pulse width, zero, infinite, positive-going edge, negative-going edge, Multiplexer, Demultiplexer, Encoder, Decoder, Comparator, Register, LOW, HIGH) (10 Marks; 0.5 Mark each)
S1. On a digital waveform, the transition time from a HIGH level to a LOW level is called \qquad .
S2. On a digital waveform, the interval between pulses is called \qquad -.
S3. For an ideal digital pulse, transition times are \qquad -.

S4. For a negative-logic pulse, the leading edge is the \qquad .

In the shown nonideal pulse:
S5. Item (1) represents \qquad .
S6. Item (2) represents \qquad -.

S7. Item (3) represents \qquad -.

S8. Item (4) represents \qquad .

S9. The device in Fig. (A) is a(n) \qquad function.
S10. The device in Fig. (B) is a(n) \qquad
S11. The device in Fig. (C) is $a(n)$ \qquad function.

S12. The \qquad circuit creates an output that indicates whether or not the input values are equal.
S13. The \qquad circuit converts information into a specific coded form.
S14. The \qquad circuit converts data from a serial to a parallel form.
S15. The __ circuit is made up of flip-flops.
S16. In the 2-input \qquad gate, a Low input gives a High output.
S17. In the 2-input \qquad gate, a High input gives a Low output.
S18. In the 2-input \qquad gate, a Low input gives a Low output.
S19. In the 2-input \qquad gate, a High input gives a High output.
S20. In the NOT digital circuit, a \qquad input gives a High output.

Answer the following requiar questions in the answer booklet: (2 questions - total of 35 Marks)

R1. For a two binary number multiplier (each consists of 2 bits): (15 Marks)
a- write the truth table of the multiplier. (4 Marks)
b- what is the optimized Boolean expresions for the first two least-significant-bits (LSBs) of the multiplier outputs.
(6 Marks)
c- implement the logic circuits for the optimized expressions using only NAND gates. (5 Marks)
R2. For the 7-segment decoding logic, a BCD number is used as the input and the 7 outputs are used to activate the corresponding segments of the display. The arrangement of segments is as shown here: (total of 20 marks)
a- write down the truth table (use X to represent don't care output) for all 7 segments.
(7 Marks)
b- develop the optimized Boolean logic expression of the "e" output segment. (8 marks)
c- develop the optimized logic circuit for segment "e". (5 marks)
Note: complements of inputs are available.

