Mansoura University Faculty of Engineering Electronics and Communications Engineering Department

Digital Circuits 1 - Term Exam	Exam Time:	3 hours
1st year Communications - 2nd Term	Total Marks:	70 Marks
Exam Date: June 04, 2014		

Important Instructions:

1 This exam contains:

- 20 Questions (Fill the blanks with pre-selected words) --> Write ONLY your answers in the answer booklet (10 Marks; 0.5 Mark each)
- 15 MCQs (4 choices each) --> Mark your answer selection in the MCQ answer sheet in the middle of the answer booklet Q1-Q15 (15 Marks; 1 Mark each)

20 Questions (True/False) --> Mark your answer selection in the MCQ answer sheet in the middle of the answer booklet Q16-Q35 (10 Marks; 0.5 Mark each) Mark ① for TRUE answer and mark ② for FLASE answer.

2 Questions (Regular technical questions) --> Write your answers in the booklet (35 Marks)

My best wishes to YOU!

Dr. Sameh Rehan

Note: This exam has questions on both sides of the questions' sheets.

Page 1 of 4

	Digital Circuits 1 - Term 2 Exam		June 04, 2014				
	1st year Commuications engineering student	ts	page 2				
	Answer the following 15 MCQs in the MCQ answer sheet in the answer booklet: (15 Marks)						
Q1	A circuit that converts an analog waveform to a digital signal is commonly called a(n)						
1	PLD .	3	DAC				
2	ADC	() ()	CAD				
Q2	A circuit that is most likely to be found in a						
1	digital-to-analog converter		SPLD				
2	programmable logic device	4)	analog-10-digital converter				
Q3	When using negative logic		$\mathbf{H}\mathbf{C}\mathbf{H} = 0 = 1$				
1	HIGH = 1 and LOW = 0		HIGH = 0 and LOW = 1				
2	HIGH = 0 and LOW = -1		LOW = -1 and $HIGH = 1$				
Q4	The math symbol for time of transition from LOW to HIGH is						
1	t _r		tw				
2	T		tf				
Q5							
1	tr		tw				
2	T		tf				
Q6	For a negative-logic pulse, the leading edge i						
1	LOW-to-HIGH transition		rising edge				
2	positive-going edge	4	negative-going edge				
Q7	The output of an AND gate is LOW						
1	only when all inputs are LOW		when at least one input is LOW				
2	only when all inputs are HIGH	4	no answer is correct				
Q8	The output of an OR gate is LOW						
1	only when all inputs are LOW	3	only when all inputs are HIGH				
2	whenever any input is HIGH	4	no answer is correct				
Q9	Two kinds of data selectors are and	-					
1	encoders, decoders	3	multiplexers, clemultiplexers				
2	comparators, registers	4	adders, subtractors				
Q10	Which converts data from a serial to a parallel fo	rm?					
1	Comparator	3	Encoder				
2	Demultiplexer	4	Multiplexer				
Q11	This is the timing diagram for a 2-input		gate.				
1	AND						
2	NAND .		в				
3	OR						
4	NOR		× L_ L				
Q12	This is the timing diagram for a 2-input		gate.				
1	AND						
2	OR		в				
3	XOR						
4	XNOR						

	Digital Circuits 1 - Term 2 Exam 1st year Commuications engineering students	June 04, 2014 page 3
	k sector and the sector of the	
Q13 ①	This is the truth table for a(n) NAND	
2	NOR	
3	AND	
4	OR	
Q14 ①	This is the truth table for a(n) NAND	A B X 0 0 1
2	NOR	
3	AND	
4	OR	
Q15		ABX
1	NAND	
2	NOR	
3	AND	
4	OR	

Answer the following 20 TRUE/FALSE questions in the dedicated MCQ answer sheet Q16-Q35 in the answer booklet: (10 Marks; 0.5 Mark each)

Q16 6 binary digits are required to count to decimal 100.

Q17 In binary addition, 10 + 11 = 21.

Q18 In binary multiplication, $11 \times 11 = 1001$.

Q19 In binary division, $1000 \div 0100 = 100$.

Q20 In binary subtraction, 101-11 = 10.

Q21 The decimal number system consists of the digits 0-10.

Q22 The largest numerical value that is possible with a 4-bit binary number is 16.

Q23 The largest single digit in the octal numbering system is 7.

Q24 A circle, or bubble, on a distinctive-shape logic symbol indicates a logic inversion.

Q25 The OR gate performs as switches wired in series.

Q26 The output of a 2-input XNOR gate is 1 when the inputs are equal, or identical.

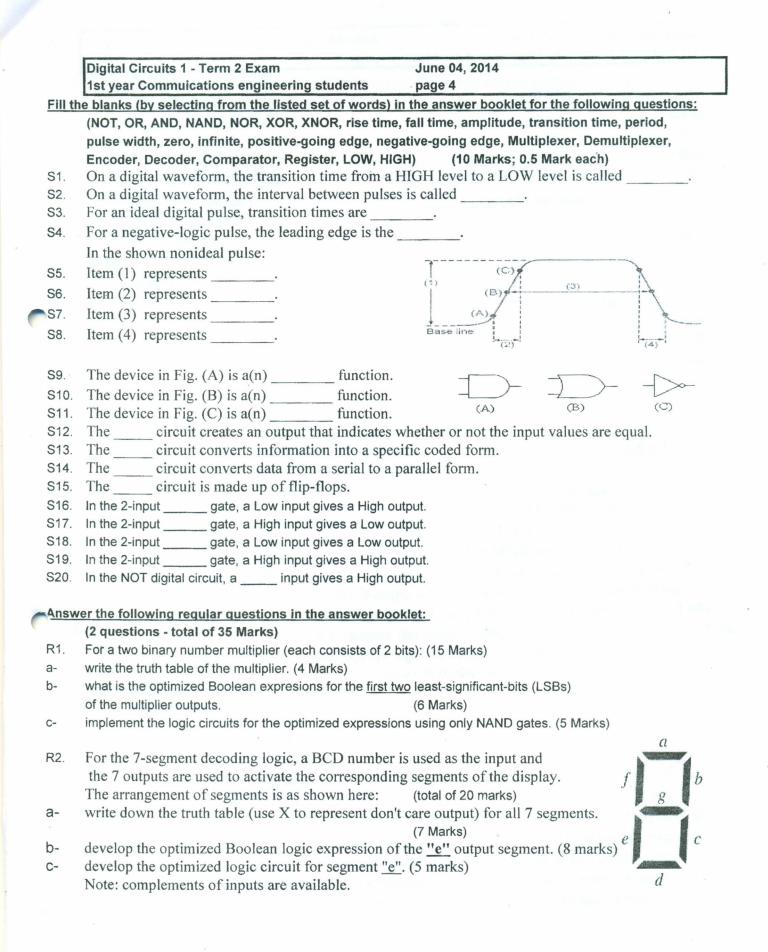
Q27 The output of an AND gate is HIGH only when all inputs are HIGH.

Q28 When the inputs to a 3-input OR gate are 001, the output is 1.

Q29 When the inputs to a 3-input NAND gate are 001, the output is 1.

Q30 When the inputs to a 3-input NOR gate are 001, the output is 1.

Q31 The XOR gate can be used to add two bits.


Q32 DeMorgan's theorem states that:

Q33 The commutative law of Boolean addition states that A + B = A. B.

Q34 The Karnaugh maps provide `cookbook` approaches to simplifying Boolean expressions.

 $\overline{XY} \equiv X + Y$

Q35 When grouping cells in a Karnaugh map, the cells must be combined in groups of 2's.

