Mansoura University	Electrical Eng. Dept.
Faculty of Engineering	1 st Year, January 2013
PART (A): 90 Minutes	Electric Circuits(1)

Please Answer all questions ; (Don't use pencil)

First Question: (12 Marks):

Using nodal-voltage analysis method, determine the current passing through the 8-V voltage source for the shown circuit.

$$G_1 = G_2 = G_3 = 0.5 \text{ S}$$

Second Question: (12 Marks):

For the shown circuit, determine the value of resistor "R" that consumes maximum power.

Third Question: (12 Marks):

Using the superposition theorem, determine the value of voltage V_{x} for the shown circuit.

Fourth Question: (12 Marks):

For the shown AC. Circuit, if $V_s=36 \, \text{Sin}(3t\text{-}60^\circ) \, \text{V}$, determine \mathcal{E}_{1} ,

 ℓ_2 , ℓ_3 and V_{ab} . Also determine the circuit impedance, power factor, and the power consumed by this circuit.

Please turn over

Fifth Question: (12 Marks):

A 3-ph supply with voltage of V_s =380 Sin314t V, is supplying the 3-ph load shown in figure. Calculate; a- The phase currents. b- The line currents. The total power consumed by the load.

WITH MY BEST WISHES

Prof. Dr. Kamal Shebi

 Q_1 :

- a) <u>Derive</u> the equation for energy stored in an air-gap and the equation for force between two magnetic surfaces.
- b) Sketch typical hysteresis loop for:
 - i) soft iron ii) Hard iron iii) Ferrite and *explain* the origin of eddy currents in a magnetic core.
- c) A cast iron ring has a 3600 turns coil which carry a current of 0.2 A. The cross-sectional area of the ring is 5 Cm², and magnetic path length is 25 Cm. <u>Determine</u> the total flux.
- d) In the magnetic circuit shown.

 Calculate the current I. ($\mu_r = 2000$)

 Q_2 :

- a) Using illustrations, <u>estimate</u> the mutual inductance between two series-aiding and series-opposing coils.
- b) <u>Demonstrate</u> and <u>sketch</u> the basic circuit of an automobile ignition coil and how it operates.
- c) Two identical coils have a relative permeability of 500. Each coil has 100 turns and the core dimensions are: cross sectional area A=3 Cm², and magnetic path length $\ell=20$ Cm. <u>Calculate</u> the inductance of each coil and the mutual inductance between the coils. (Assume the two coils are wound on the same core).
- d) The total inductances of two coils when they are connected in series-aiding and series-opposing are 1.2×10^{-3} H and 0.6×10^{-3} H respectively, <u>calculate</u> L₁, L₂, and M.

 Q_3 :

a) A C-R circuit connected as shown in Fig ().If C₁ is to be charged to 60 V in 24 ms, <u>determine</u> the value of C₁. Also, <u>calculate</u> the value of R₂ for I₀=1.2 mA in the discharge cycle.

b) <u>Determine</u> V_{th} and R_{th} between the terminals a, b. Use V_{th} , R_{th} in determining i and v_L after 2 seconds.

Good Luck. Prof. Mohamed Adel El-sayes.