Mansoura University Faculty of Engineering Structural Engineering Dep.	Reinforced concrete (3) الورقة الأولي	Design of Concrete Structures 4 th year civil Final-Term Exam: 2012-2013	
Time allowed: 4.0 hour			
** Any missing data may be reasonably assumed **			

Problem (1) 30 points

Fig.(1) shows an open channel water structure resting on the columns

It is required to:

- 1-Carry out a complete design for all elements, $f_{cu}=300 \text{ kg/cm}^2$ and $f_y=3600 \text{ kg/cm}^2$.
- 2- Draw to a convenient scale the reinforcement details.

Problem (2) 30 points

Fig.(2) shows a ground circular water tank supported on a good soil with an allowable bearing capacity is 1.3 kg/cm² and covered with spherical dome with thickness = 10 cm , covering material = 50 kg/m^2 and live load = 50 kg/m^2 . It is required to: 1- Design the tank and the dome if $f_{cu} = 300 \text{ kg/cm}^2$ and $f_y = 3600 \text{ kg / cm}^2$

2-With an appropriate scale show the reinforcement details for both the tank and the dome..

Fig. 2

Mansoura University	Reinforced	Design of Concrete Structures
Faculty of Engineering	concrete (3)	4 th year civil
Structural Engineering Dep.	الورقة الثانية	Final-Term Exam: 2012-2013

Problem (3) 15 points

For the post tensioned prestressed concrete simple beam shown in Fig. 3, the allowable compressive stresses at final =-140 kg/cm², at transfer=-135 kg/cm², the allowable tensile stresses at final=+ 26 kg/cm^2 , at transfer = $+12 \text{ kg/cm}^2$. If the losses =15%, the beam is subjected to dead load $g = 1.5t/m^3$ and live load $p = ? t/m^3$.

It is required to:

- 1-Find the initial prestressing force F_0 and the allowable live load p = ?.
- 2-Find the stresses distribution at support and at mid-span section for the final stage
- 3-Check the shear and principal stresses due to dead load and F_o.

Problem(4) 15 points

A continuous post-tension prestressed concrete beam ABC carries a total load of 5 t/m as shown in Fig.4. The prestressing force $F\infty = 200$ ton.

It is required to

- 1. Find the bending moments due to prestressing force only.
- 2. Determine the resulting moments due to prestressing force and external loads.
- 3. Find the depth if $K_1=1.8$, b=25 cm, $f_{ctop}=120 \text{ kg/cm}^2$ and check of the normal maximum stresses.

$$W = 5 t / m^{1}$$

