SURVEY OF DIFFERENT POLLEN SOURCES GATHERING BY HONEY BEE AT QUNATIR AL-KHIRIA, QALUOBIA GOVERNORATE. Naglaa, A. Gazala¹ and E. E, Nowar² 1-Apiculture Research Dept., Plant Protect. Inst., Agric. Research Center 2-Plant Protection department, Fac, Agric., Moshtohor, Benha University

ABSTRACT

The present work was conducted in the apiary of Plant Protection Institute at Qunatir, Qaluobia on pollen grains which collected by honeybees (Apis mellifera L.) during the year 2013. In Qunatir plantation was studied and indicated that about more than 60 flowering plants were sources for honeybee colonies in this area. The major pollen sources were Indian Corn (Zea maize L.), Egyptian Clover (Trifolium alcxandarinum L.), Citrus trees (Citrus Spp.), Broad bean (Vicia faba L.), Wild mustard (Brassika Kaber Koch), Orientals plants and weed grasses. For The amount of pollen trapped by each colony of bees examined determined the sources and identified of plant sources and the local of the cultivated trees, crops and plants in our area. Pollen traps used to obtain the economic amounts produced from honeybee colonies during different seasons. Pollen gathering activity during Citrus, Clover and Corn season. The results revealed that the honeybee colonies collected more amount of pollen during August month and summer season. While the low amounts of collected pollen were in December month and winter season. There were significant differences between all months and between all four seasons. The mean amounts of pollen trapped during Citrus season were 247.66 g/colony. The mean amount of pollen trapped was 355.00 and 1043.33 g/colony during the season of Clover and Corn seasons.

Keyword: Honeybee, pollen, year months, year seasons, pollen traps, Citrus season, Clover and Corn season.

INTRODUCTION

Bee's health depends on honey, but also pollen grains (Hydak, 1970). Pollen is the protein source in honeybee nutrition (Johnson, 1977 and Stace, 1996) Honeybees collect plant pollen from flowers and carry it in the pollen basket to the hives where it is stocked in cell combs in order to be utilized as a protein source for feeding (Marchini *et al.*, 2000 and Harter *et al*, 2002). Pollen trapping can be used to study pollination and pollen flow (Nabors, 1997). The bee pollen is created in the male sexual organ of the flower- anthers with the purpose of fertilizing the stigma. It is the main source of proteins for bee and fruits (Chlebo, 2009). The characterization of bee-collected pollen, colour, botanical origin (Lorenzo, 1989). The feeding pollen in the hive during the teaseling period of corn. Zea mays L. virtually eliminated pollen collection from this sources and greatly reduced the total collection of pollen by field honeybees. *Apis mellifera L* (Floyd, 1972). Pollen gathering by honeybees in

Minia on bean (Vicia faba), Egyptian clover (Trifolium alexandrinum), cotton (Gossypium), maize (Zea mays), Borage (Borago officinalis), Fennel (Foeniculum vulgare), dill (Anethum graveolens) and coriander (Coriandrum sativum). In terms of pollen production (kg/feddan/day), maize gave the highest vield, followed by bean, Egyptian clover, borage, coriander, cotton, fennel and dill. (Atallah et al., 1989). the distance across which bees transfer pollen is a factor in choosing the optimum combination of male- fertile and male- sterile lines, and a reduction of pollen loads on stigmas during afternoon hours may result from removal of previously deposited pollen by honey bees (Mohmood et al., 1990). Vicia faba, Zea mays, Trifolium alexandrinum, Eucalyptus sp and Melilotus siculus are considere the main sources of collected pollen at Kafer Elsheikh region (SeragEl-Dein et al., 2004). Coating has a good apicultural potential as it is composed of a succession of plants which supply pollen and nectar all year (Freitas, 1994). Species are grouped into broad colour categories and arranged by family and genus within each category. The colours were recorded by removing pollen loads from honey bees (Apis *mellifera*) caught foraging at flowers and then matcing the colour of the fresh pollen loads by eye to the most similar colour in a reference colour chart. The colours were recorded as CMYK screen tint percentages as used by printers for the 4- colour printing process (for further details, see (Kirk 1994a,b). The honey bees were collecting mainly pollen, between 06.00 and 09.00 h. On average, a bee visited 12 flowers/min, and on each flower collected 80% of the pollen on each anther. On average, a fresh pollen load weighted 1.6 mg and contained 46 520 grains; in addition a bee carried 910 pollen grains on its body. This economically useful tree (seeds contain edible oil) is therefore also a good pollen source for bees and could be used in planting programmers (Rao et al., 1995). The collections were held by installing pollen traps in the hive entrances for the period 7: 00 AM to 6: 00 PM, there was considerable overlap in the food source visited by different colonies. (Marchini et al., 2000) The high collected amounts of pollen were during the summer season while the low amounts of collected pollen were in winter season. The high mean monthly amounts of collected pollen by the strains during August. There were significant differences between all months and all seasons (Farag et al., 2008). The attractiveness of three pollen types Bean pollen, Clover and Maize pollen to honeybees was studied in the light of their consumption rats and some chemical characteristics by (Emad et al., 2011), the highest value of total protein was registered in Bean pollen, while the Maize pollen was characterized by having the highest value of total lipids.

This work was conducted to study the important and the major pollen sources of pollen gathering activity by honey bee at Qunatir Khiria Governorate through the period of 1/1/2013 to 31/12/2013.

MATERIALS AND METHODS

The experiment was carried out in Apiary at the Institute of Plant Protection in Quantar, Qaluobia governorate during the period of 1/1 to 31/12/2013.

Experiment 1: Activity of pollen gathering :-

Three standard 8 frames colonies of honeybee *Apis mellefera* L. were used to fitted pollen traps for each honeybee Carniolan bees. These colonies were established hives of approximately equal strength . Trapped pollen was removed from 3 days (The pollen traps were fitted 3 days only and the bees enter free 3 days, respectively. The collected pollen was weighted. Trapping began on January first, until the end of sample on desember. Trapping continued until pollen collection was continuous during the seasons of study. From the loads of pollen was trapped sampling which used for the microscopic examination and classified were prepared to obtain the source of pollen grains collected from plants flowering in the location Quantar during the pollen flow seasons (citrus, clover, corn and others).

Experiment 2: Survey of plant flowers at Quantar region and others:-

Most pollens could have been obtained within several kilometers of the colonies, yet bees flew at least 3-6 km to obtain the pollen grains from the flowering plants (O Neal and Waller, 1984) .There were three major periods of pollen influx for colonies foraging within the cultivated trees and crops, (Citrus trees, Clover and Corn crops), the other plants were the minor sources of pollen in these area was observed and tabulated monthly during the year of study .The other observations was conducted for survey of all flowering plants in the farms, which bees may its visiting for pollen collection or nectar gathering activity.

Experiment 3: Evaluating pollen production from plants by removed its flowers:-

Knowing how much pollen a plant species produced would be useful in ranking plants . The amount of pollen grains produced in a male flower was used with removed of pollen from flower, the pollen grains was weight,(Traynor, 2001), for obtaining the amounts of pollen grains may be produced from the cultivated plants and compared with pollen trapped during this study.

Identification of pollen sources:-

All the permanent preparations on which our experiments are based have been made from pollen sources or gently removed from the newly opened anthers directly on to the glass slide as described by «Hyde and Adams,1958». After being defatted with absolute alcohol or ether and gently distributed with a needle the grains have been mounted glycerin jelly containing basic fuchsin as astain .It is necessary to use only just enough jelly to occupy the space beneath the cover slip without undue pressure being

applied, otherwise either the film is too thick and the grains do mot lie nearly in the same plane or it is too thin and they are liable to be flattened and so distorted, different kinds of pollen vary in their capacity to absorb stains, and the depth of colour attained by grains of any particular kind varies according to their density on the slide . In order to ensure acorrectly stained slide it is therefore necessary to make aeries using jellies of graded stain content. The optical system used in taking the majority of the photographs was a microscope fitted with camera. All the photographs have been taken at magnification of 450-1000 X diametres. When compiling the accompanying description and in particular when making the measurements (Khattab, 1976). **Statistical analysis:-**

The statistical analysis was conducted according to (Snedecor and Cochran, 1973) and M-State computer analysis.

RESULTS AND DISSCATSSION

Data indicate that the honeybee workers collected pollen from different sources available in the areas of studies, while the pollen of Cotton was not collected according to (Loper, 1986). More than 60species of flowering plantats or trees were sources for pollen collecting by honeybee colonies in the area of study. More than ten major pollen types were gathered, among which, Zea maize, Trifolium alexandarinum, Citrus spp, Vicia faba, Eucalyptus spp, Brassica spp., Acacia arabica, Rosa sp., Cucurbita spp., Prunus sp. and Helianthus annus. The honeybees had to the visiting of flowering plants are recorded in (Table 1) only thirty pollen species were identification as in (Photo 1 to 30). The flowering of plants species which produced pollen was detected in the pollen trap samples. The honeybee workers did collect significant quantities of pollen from plants species, the main sources in the pollencollection data, is the high proportion of pollen were (Citrus spp., Trifolium alexandarinum, Zea maize) (Table 1). The most important sources of nectar and pollen vielding crops were only five. The first source is Citrus trees which begins its blooming from 10 March to 18 of April, the second crop is Clover plants which begins its flowering from the start of May till the middle of June, the third of crop plants is Corn "Zea maize" which is usually the major source of pollen for the colonies of honeybees, this is start blooming at 1of July, till the end of August, the fourth sources of pollen are the Orientals and grasses plants which blooming during the different seasons of the year and some sources flowering plants are Leguminaceae plants, (Vicia faba, Pisum sativum) and Cruciferae, Brassica spp, Eruca sativa, Raphanus sativas and some vegetable flowering plants. Besides the above flowering plants the some sources for pollen.

No.	Months	Latine name	Family
1		Brassica kaber koch	Cruciferae
2		Vicia faba L.	Leguminasae
3		Oreodoxa regia L.	Palmaceae
4		Eucalyptus spp. Baker	Myrtaceae
5	January	Prunus sp.	Rosaceae
6		Clarkia elegans	Onagraceae
7		Arctotis aurantiaca	Compositae
8		Acacia arabica	Leguminasae
1		Brassica kaber koch	Cruciferae
2		Vicia faba L.	Leguminasae
3		Trifolium alexandrimum L.	Leguminasae
4		Prunus sp.	Rosaceae
5		Pisum sativum	Leguminasae
6	February	Clarkia elegans	Onagraceae
7	_	Arctotis aurantiaca	Compositae
8		Calandula officinalis	Compositae
9		lpomoea pinculata	Convulvacea
10		Acacia arabica	Leguminasae
11		Alyssum maritimum	Cruciferae
1		Citrus spp L.	Rutaceae
2		Eucalyptus spp. Baker	Myrtaceae
3	March	<i>Brassica kaber</i> koch	Cruciferae
4		Phoenix dactylifera L.	Palmaceae
5	March	Clarkia elegans	Onagraceae
6		Calandula officinalis	Compositae
7		lpomoea pinculata	Convulvacea
8		Acacia arabica	Leguminasae
1		Citrus spp L.	Rutaceae
2 3		Trifolium alexandrimum L.	Leguminasae
		Rosa spp. L.	Rosaceae
4		Eucalyptus spp. Baker	Myrtaceae
5	April	Coriandarum sativum L.	Umbelliferae
6		Clarkia elegans	Onagraceae
7		Calandula officinalis	Compositae
8		lpomoea pinculata	Convulvacea
9		Acacia arabica	Leguminasae
10		Alyssum maritimum	Cruciferae

 Table (1): survey of pollen plant species and their classification

 throughout year of study.

Cont.,	:		
1		Trifolium alexandrimum L	Leguminasae
2		Rosa spp. L.	Rosaceae
3		Eucalyptus spp. Baker	Myrtaceae
4	May	Beta vulgaris L.	Chenopodiaceae
5		Raphanas sativas L.	Cruciferae
6		Clarkia elegans	Onagraceae
1		Trifolium alexandrimum L.	Leguminasae
2		Rosa spp. L.	Rosaceae
3	June	Eucalyptus spp. Baker	Myrtaceae
4		Zea maize L.	Graminae
5		Arctotis aurantiaca	Compositae
1		Zea maize L.	Graminae
2	lub.	Rosa spp. L.	Rosaceae
3	July	Helianthus annus L.	Compositae
4		Cucumis sativus L.	Cucurbitacea
1		Zea maize L.	Graminae
2	August	Lufa cyledrica L.	Cucurbitaceae
3	August	Cucurbita spp.	Cucurbitaceae
5		Cucurbita spp.	
1		Zea maize L.	Graminae
2	September	Lufa cyledrica L.	Cucurbitaceae
3	Coptember	Cucurbita spp.	Cucurbitaceae
1		Zea maize L.	Graminae
2	October	Rosa spp. L.	Rosaceae
3		Lufa cyledrica L.	Cucurbitaceae
1		Rosa spp. L.	Rosaceae
2	November	Cucurbita spp.	Cucurbitaceae
3		Helianthus annus L.	Compositae
1		Brassica spp.	Cruciferae
2	December	Vicia faba L.	Leguminosae
3		Calandula officinalis	Compositae

760

J. Plant Prot. and Path., Mansoura Univ., Vol. 5 (6), June, 2014

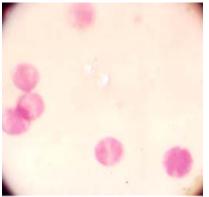


Photo. (1) Citrus reticulata X 400 Photo. (2) Citrus aurantium X 400

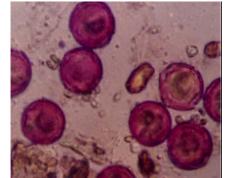
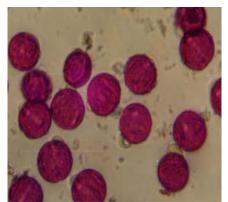



Photo. (3) Citrus aurantifolia X400

Photo. (5) Brassica rapa X320

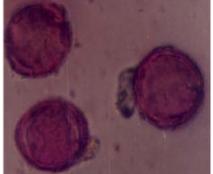


Photo. (4) Citrus maxima X 400

Photo.(6) Pyrus communis X200

Photo.(7) Prunus sp.X 320

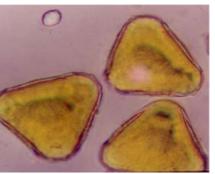


Photo.(8)Hibiscus rosa sinensis X 160

Photo. (9) Calendula officinalis X 320

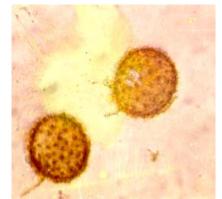


Photo.(11) Gossypium barbadence L. X 100

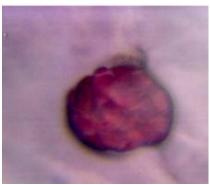


Photo. (10) Acacia arabica X 320

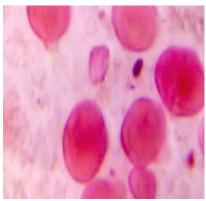


Photo. (12) Trifolium alexandrinum L. X 320

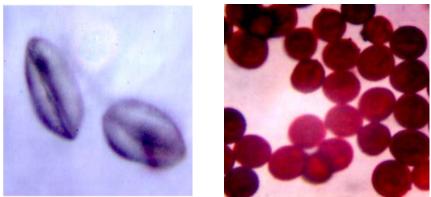
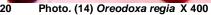



Photo. (13) Phoenix dactylifera X 320

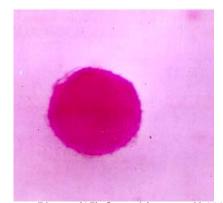


Photo. (15) Cucurbita spp. X 100

Photo. (16) Rosa spp. X 320

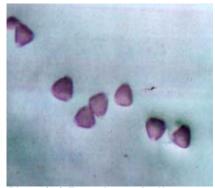


Photo. (17) Tropealum majus X 160

Photo. (18) Alyssum maritimum X 200

Photo. (19) Lonicera japonica X 200



Photo. (20) Arctotis grandis X 200

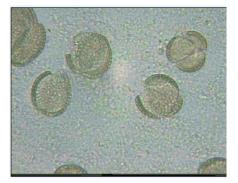


Photo. (21) Malus domestica X 200

Photo. (23) Ammi majus X 200

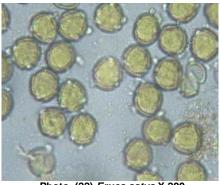


Photo. (22) Eruca satva X 200

Photo. (24) Foeniculum fulgare X 200

Photo. (25 Brassica oleraceae var cabitata X 200

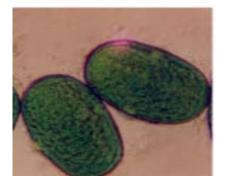


Photo. (27) Vicia faba L. X 400

Photo. (26) Coriandum sativum X 200

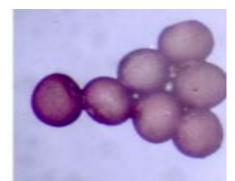


Photo. (28) Zea maize L. X 160

Photo. (29) Clarkia elegans X 200

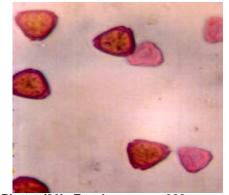


Photo. (30) Eucalyptus spp. 320

The results in Table (2) revealed that the F1carniolan collected more amo1731.44unt of pollen during August month (761.33 g/colony) and summer season (1731.44g/ colony). While the low amounts of collected pollen were in December month (29.34 g/colony) and winter season (99.86 g/colony). There were significantly differences between months.

Table (2): Monthly average amount of pollen collecting (g./ colony) by				
Carniolan hybrid (F1) at Qanuter station, 2013.				

Mantha	F1		
Months	Mean		
January	32.72		
February	37.80		
March	265.95		
April	324.50		
Мау	402.33		
June	233.37		
July	736.74		
August	761.33		
September	157.45		
October	81.97		
November	35.79		
December	29.34		
Total	3099.29		
L.S.D at 5 %	5.270		

The data in Table (3) summarized the collection amount of pollen at the different seasons during 2013. The best collected amounts of pollen were during the summer season followed by spring, autumn and Winter seasons. The mean amount of collected pollen were 1731.44, 992.78, 275.21 and 99.86 g/colony for summer, Spring, Autumn and Winter respectively. The data showed that there were significant differences between all four seasons. The high collected pollen were during the summer season while the low amounts of collected pollen were in winter season. There were significant differences between all seasons (Farag *et al.*, 2008)

Carniolan hybrid (F1) at Qanuter station, 2013.	Table (3): Seasonaly average amount of pollen collecting (g./ colony) by					
	Carniolan hybrid (F1) at Qanuter station, 2013 .					

Seasons	F1
Seasons	Mean
Winter	99.86
Spring	992.78
Summer	1731.44
Autumn	275.21
Total	3099.29
Mean	774.82
L.S.D at 5 %	60,27

J. Plant Prot. and Path., Mansoura Univ., Vol. 5 (6), June, 2014

Table (4) indicate that, the total amount of pollen trapped from 3 colonies during the Citrus period or flowering bloosoming (March, 10 to April, 18, 2013) was 743g. with an avarage of 247.66 g./colony From data presented in table 4 it could be concluded that the date 28,29,30 March was the best date for collecting Citrus pollen grains as it gained 47.00g/colony on the reverse the least mean value of gathering Citrus pollen was at 16,17,18 April as it gained 23.66g/colony. There were significantly in amounts pollen in dates.

Table (4): Average amounts of pollen trapped (g/colony) during flow of Citrus season 2013.

Date	Mean(g. /colony)
March 10,11,12	25
March 16,17,18	36.66
March 22,23 ,24	44.66
March 28,29 ,30	47.00
April 3,4,5	42.66
April 9,10,11	28.00
April 16,17,18	23.66
Total	247.66
L.S.D at 5 %	2.11

Table (5) indicate that, the total amounts of pollen trapped from 3 colonies during the clover flowering or bloosoming period (4 of May to 12 of June) was 1065g with an average of 355.00g/colony.The data analysis showed that the best date for gathering Clover pollen was 16,17,18 May as it was 83.33g/colony on the opposite the least mean value of pollen gathering was at 10,11,12 June as it gained 26.33 g/colony in the year 2013.There were significantly in amounts pollen in dates.

Table (5): Average amounts of pollen trapped (g/colony) during flow of Clover season 2013.

Date of trapped	Mean
May 4,5,6	48.33
May10,11,12	67.66
May16,17 ,18	83.33
May22,23 ,24	56.66
May28,29 ,30	47.66
June 4,5,6	27.66
June10,11 ,12	26.33
Т	335.00
L.S.D at 5 %	3.85

Table (6) shows three colonies were placed in the apiary for the activity on the field of Corn.Pollen traps were placed on colonies on June, 29and the first pollen samples were taken at three days from July1, 2, 3; until August 28, 29, 30 during the year of study (2013). The amounts of pollen trapped during the active season on corn was3130.00g with an average of 1043.33g / colony. Data analysis showed that the date of1,2,3 August was the highst date for Corn pollen gathering as it amounted166.00 g/colony . On the opposite the least date was 28,29,30 August as it was 50.00 g/colony.

The results are in agree with Traynor, (2001) and Nowar, (2006)

Date of trapped	Mean
July 1,2,3	52.66
July 7,8 ,9	61.00
July 13,14 ,15	73.33
July 19,20,21	81.66
July 25,26,27	113.00
August 1,2,3	166.00
August 7,8 ,9	157.33
August 13,14 ,15	114.00
August 19,20 ,21	100.33
August 25,26 ,27	76.66
August 28,29 ,30	50
Т	1043.33
L.S.D at 5 %	2.76

Table (6): Average	amounts of	pollen trapped	(g/colony) during flow	/ of
Corn plant (Zea maiz L) season 2013.				

It can be concluded that from the present study the honeybee workers are development of managed for pollen collecting in the suitable seasons are doubtful that any economic program could be introduced to develop lineages of honeybees adapted to habitats, was evident. For virtually all pollen types there was an increase in the abundance of each over the study period, although some species were harvested much later than other. *Zea maize* was the first source of pollen collected by the bees in habitates (Khattab 1976) and Nowar, (2006) From the above results it could be concluded that , the main sources for pollen was during the Citrus, Clover and Corn. Pollen traps were used during these seasons for harvisting the more amounts of pollen per colony.

REFERENCES

- Atallah, M.A; Aly, F.K and Eshbah, M.M. (1989): Pollen gathering activity of worker honeybees, on field crops and medicinal plants in Minia region. Middle Egypt. Proceedings of the fourth International Conference on Apiculture in Tropica Climates.
- Chlebo, R. (2009). Bee products. [Online][Cit. 2010- 05-25]. Available internet: .http://www. Agroporadenstiver SK/ ZV/ VCely_ 03.
- Emad, A.Nafea; Asmaa, M. Fawzy; Adel, M. Mazeed. (2011). Pollen attractiveness in relation to its chemical properties in honeybee colonies. J. Egypt. Ger. Soc. Zool. ISSN 1110-5364.
- Farag, A. I.; Sharaf El-Din, H. A.; El-Shaarawy, M. O. A.; El-Samni, M. A. and Gazala
- Naglaa A. (2008). Study on the pollen gathering activity by some honey bee apismellifera, I. strains. Annals of Agric. Sc., Moshtohor, Vol. 46 (1): Pi. 11-18.
- Floyd E. Moeller (1972): Honeybee collection of corn pollen reduced by feeding pollen in the hive. American Bee Hournal, June 1972, 210-212.
- Freitas, B.M. (1994): Pollen identification of pollen and nectar loads collected by Africanized honey bees in the state of Ceara, Nrazil. Proceedings of the fifth International Conference on Apiculture.
- Harter, B; Leistikow, C; Wilms, W; Truylio, B and Engles, W. (2002): Bees collecting pollen from flowers with poricidal anthers in a south Brazilian Araucaria forest: a community study. Journal of Apiculture Research 40 (1-2): 9-16.

Haydak, M.H. (1970): Honey bee nutrition. Ann. Rev. Entomol., 15:143-156.

- Hyde , h. A and Adams , K. F. (1958): An atlas of airborne pollen Erains: viiix.macmillan & Co Ltd. London
- Jonhson,G. (1977). Bee collected pollen for artificial pollination of appies . Amer.Bee. j. 95(9): 352-353.
- Khattap, M. M. (1976). Effect of Ecological factors on honeybee activities. M.Sc.Thesis, Cairo university
- Kirk, W. (1994,a): A colour guide to pollen loads of the honey bee. International Bee Research Association; Cardiff; UK. 1994, 54pp.; Bd.
- Kirk, W. A. (1994,b). Recording the colours of pollen loads. Bee world 75 (4) 169-180.
- Loper, G. M.(1986): Cotton pollen : Honeybee avoidance and absence of gossypol. Jour., Economic Entomology, 79(1):103-106.
- Lorenzo, S. M. (1989). Colour, botanical origins and composition of bee collected pollen. Tese de Doutord ento, Universidade de Santigo de Compostela. Spain, 265 pp.

- Mahmood, A.N.; Waller, G.D and Hagler, J.R. (1990): Dispersal of upland and Pima cotton pollen by honey bees (Hymenoptera: Apisae) visiting upland male-sterile flowers. Environmental- Entomology. 1990, 19:4, 1034-1036; Bb.
- Marchini, L.C.; Moreti, A.C. de, C.C.; Teixeira, E.W.; Oliveira, P.C.F., de; de C.C. Moreti, A.C.; and de, Oliveira, P.C.F. (2000): Identification on pollen loads
- by Africanized honeybees (*Apis mellifera* L.) of different colonies places in the same surrounding. Ecossistema. 200, 25: 1, 48-51, 14 ref.
- Nabors, R.A (1997): Trapping pollen collections of the honeybee, *Apis mellifera L.*, to determine pollen flow periods. American Bee Journal.Vol137 No. 3.
- Nowar, E. E. H. (2006). Comprehensive study of pollen grain in honeybee colonies (*Apis mellifera L*) M. Se. Plant Protection Department, Faculty of Agricultural, Benha University.
- O. Neal , R. J. and Waller , E. D. (1984): On the pollen harvest by the honeybees (Apis mellifera . L) Near Tucson , Arizona (1976-81). U.S.D.A. Agricultural Research service car Hglyden Bee Research Center , Tucson , Arizona . 81-109 .
- Rao, S.P.C.; Atluri, J.B. and Rao, C.S. (1995): Sterculia foetida as a pollen source for the Indian honey bee, Apis cerana indica. Indian- Bee – Journal. 1995, 57: 1, 18-19; Bj.
- Serag El-Dein,F.S.,Mansour, H.M. and El- Shaarawi,M.O(2004).Amount and sources of pollen grains at Kafer El-Sheikh Governorate. Special issue of the Journal of:Egyptian Societ for Environmental Applications, ESEA V(1) N(1).
- Snedecor, G.W. and Cochran, W.G. (1973): Statistical Methods. Lowa State Univ. Press, Ames, USA. Sixth editon, 4 th printed.
- Stace, p. (1996):protein content and amino acid profiles of honeybee-collected pollens.bees trees consultants, Lismore, NSW, Australia.
- Traynor. J. (2001): Evaluating pollen production of plant. American Bee Journal Vol. (4) No.4.

حصر لمصادر حبوب اللقاح المختلفة و المجموعةبواسطة نحل العسل بالق ناطر الخبرية – محافظةالقليوبية. نجلاء الاحمدي غزالة¹ والحسيني السيد نوار² ١ - قسم بحوث النط بالقناطر الخيرية - - معهد بحوث وقاية النباتك – مركز البحوث الزراعية ٢ - قسم وقاية النباتك – كليه الزراعة بمشتهر – جامعه بنها .

أجرى هذا البحث فى منحل قسم بحوث النحل بالقناطر الخيرية – محافظة القليوبية التابع لمعهد بحوث وقاية النباتات بهدف در اسة نشاط طوائف نحل العسل فى جمع حبوب اللقاح وحصر الانواع الهامه والرئيسية التي يجمعها نحل العسل. و قد تم حصر أكثر من 60 نوع من حبوب لقاح النباتات والأشجار المزهرة في منطقة القناطر الخيرية وقد تم حصاب ما تجمعه الطائفة من حبوب اللقاح على مدار سنة الدر اسة 2013 وكانت أعلى كميات شهرية جمعت من حبوب اللقاح خلال شهر أغسطس وخلال موسم الصيف ويليه مواسم الربيع والخريف ثم الشناء. وكانت أقل كميات مجموعة من حبوب اللقاح خلال شهر من حبوب اللقاح خلال شهر ديسمبر وخلال موسم الشتاء. وكانت هناك فروق معنوية بين الشهور من حبوب اللقاح خلال شهر ديسمبر وخلال موسم الشتاء. وكانت هناك فروق معنوية بين الشهور وكذلك وجدت فروق معنوية بين الفصول الأربعة. وهناك بعض المصادر النباتية الرئيسية لحبوب اللقاح مثل نباتات الذرة ونباتات البرسيم المصري وأشجار الموالح والفول والكبر وكذلك النباتات الطبية والعطرية ونباتات الزينة ويعض الحشائش والأعشاب المتواجدة بمنطقة الدراسة .وقد تم تحضير هذه الدبوب للفحص الميكروسكوبي وتصنيفها وتصويرها ميكروسكوبيا للتعرف عليها وعلى مصدرها النباتيوقد وجد أن متوسط إنتاج طائفة النحل الكرنيولي290 جم 3009 جما النحل في تجميع حبوب اللقاح خلال موسم الموالح ،موسم البرسيم و موسم حبوب الذرة. إنتاج موسم الموالح (2013) من حبوب اللقاح الموائية الكرزيولي300 جم سنويا و تم در اسة نشاط النحل في تجميع حبوب اللقاح خلال موسم الموالح ،موسم البرسيم و موسم حبوب الذرة. ولقد وجد أن متوسط إنتاج موسم الموالح (2013) من حبوب اللقاح المائفة الكرزيولي24 240.60 جم منويا و تم در اسة نشاط النحل في تجميع حبوب اللقاح حلال موسم الموالح ،موسم البرسيم و موسم حبوب الذرة. ولقد وجد أن متوسط إنتاج موسم الموالح (2013) من حبوب اللقاح المائفة الكرزيولي25 740 جم منويا.