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AN INVESTIGATION OF SOME TURBULENT BOUNDARY
LAYER PARAMETERS"

BY

S.F,HANNA, M,5, SAAD EL-DEEN and R.M.EL-BADRAWY *
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In turbulent boundary layer problems, the velocity defect
law suggested by Coles consists of two-universal functions;
the law of the wall and the law of the wake. This defect law
egrees very well with experiments for turbulent boundary layers,
only at momentum Heynolds number Re(fxx > 6000,

In the present wbrk the wake function is modified to -
satisfy in such away simulatanously the normelizing conditions
stated by Coles and the variation in the empirical constant &
with Red’x& (without any restrictions) and the velocity profile
parameter P,

The new modification in a and wake functions provides the
posesibility of studying the velocity profile and the different
parameters controlling the behaviour of the turbulent boundary
layer efficiently.

-

NOMENCLATURLK

0 free stream velocity m/sec

c velocity at the outer edge of the boundery Jlayer m/Bec

e friction velocity, Y7, /¢ m/sec

Cp locel skin friction coefficient, fw/p§§

Cy velocity of the fluid inspide the boundary layer in
x-direction m/sec

¢y velocity component in y-direction m/sec
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d12 boundary layer form parameter, § /8
D c, yey
1 boundary layer shape ;araueter,j ¢ = =) . d(=5=)
o T ¢
P the velocity profile parameter
P free stream static pressure bar
— 6~’
Redir Reynolds number based on the momentum thickness S
X
coordinates
¥
w (=) wake function
6 boundary layer thickness, m
*
¢ displacement thickness of the boundary layer m

=) cv
[ - 2.y
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§ momentum thickness of the boundery luyer, m
il c
X St
J b= (1 = ":).uy
/] & o
- x e
& ghear stress in boundary layer R/m"
o~
Lo wizll shear strecs
. dynamic viscosity poise
s
» kinematic viscosity m©/sec
- [
. : s e ey
A hpler: nunber, == =p==i(
G Ax
AL pregsure gradient parameter
b4 emperical conctant

1- INTRODUCTION:

S —————— i —

ATTEMPTS heve been made by many workers in the pest 40
years to predict turbulent boundary layer growth and separat-
ion in two-dimengional flow. MNo complete theoretical solution
has yet been valid due to the difficulties in obtaining a .clear
picture of the mechanism of turbulent motion. Additional emp-~
irical formula, based on experimental resulis, were ususally
introduced to the mathematical basis for boundary layer investi-
gation, based on momentum or energy equations. Accordingly the
calculations of turbulent boundary layer are semi-emperical in

nature.
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A principle assumption for calculating turbulent boundary
layer is that, the velocity profiles can be described by a
gingle~-parameter. This assumption greatly simplifies the study
of the turbulent boundary layer.

Many suthors devised two-parameter methods, among them
ﬂottal, Grusohwitz2 and Peter3
description of the velocity profile than can be offered by

y in order to give a better

uniparameter method.

4 introduced a different shape factor to describe

the velocity profile, and different assumption for the well
5

Buri
shearing stress. A.E. Von Doenhoff and Titervin-® proposed
enother approximate method for calculating the important
values that control the behaviour of turbulent boundary layer.

Coles (1956)6 suggested that the turbulent boundary layer
with adverse pressure gradient can be described with a profile
consisting of the law of the wall and the law of the wake.

The skin friction coefficient (through CZ ) and the velocity
profile parameter P were employed as parasmeters. This velo-
city law of Coles is taken therefore as a basis to this study,
with the introduction of some new developments in order to
suit the variation in the empirical congtant 2€ with Red,x*

2 6000,

2- THE LAW OF THE WAKE AND THE LAW OF THE WALL IN TURBULENT B.L.

After an extensive survey of mean velocity profile in
various two-dimensional incompressible turbulent boundary layer
flows, it is proposed to represent the profile by a linear
combination of two universal functions. One is tune well-known
law of the wall, the other the law of tne wake which is chara-
cterized by the profile at & point of separation or reatta-
chment. Thege functions are cousidered to be established
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empirically, by a study of the mean-velocity profile, without
reference to any hypothetical mechanism of turbulence, The
development of & turbulent boundary layer is ultimately in-
terpreted in terms of an equivalent wake profile, which sup-
posedly represents the large eddy structure and is consequence
of the constraint provided by the inertia. This equivalent
wake profile is modified by the presernce of a wall, at which
& further constraint is provided by viscosity. The wall con=-
straint, although it penetrates the entire boundary layer, is
manifested chiefly in the sublayer flow and in the logarithmic
profile near the wall.

The ﬁistorical development of the law of the wall, shows
that, in the hands of Prandtl, Von KAKMAN!  and others, in-
cluded a simple dimensionel argument which has not lost its
usefulness.

Let Cx (x,y) and Cy(x,y) be the mean velocities in a
considerable turbulent shear flow which is steady and two-
dimensional on the average. The flow exerts a shearing siress
Zw(x} on a smooth impereable wall at rest, at Y = 0. For a
fluid of constant density, a friction velocity Cf,(x) is def-

ined by:

Nl
SJ-C —LW ..000'10(201)

Suppose that the mean-velocity profile of tnat flow is found
to be adequately represented by & relationship Q(Cx,y,g,aw,)z,
P ) =0, in an obvious notation, and that this relationship
is found in some region, near the surface, to be independant
of the characteristic length ¢ . It follows from the princi-
ples of dimensional analysis, without any explicit assumpt-~
ions about the mature of the turbulence, that in this region
the équation

c ¥ olin
X z

=f = e loou.-.l'C(
o G (2.2)
muat be gatifeid
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As several writers in the field have pointed out, equat-
ion (z.,2) is an implicit equation for Cf (hence for f’w) where
0 Mo and Cx(y) are given,

Before the development of the mixing analogy, the function
in Egqg. (2.2) was sometimes taken as & power law, for the lack
of a better representation. The sublayer, that is, the region
where viscous stress is predominate, was treated separately
by means of the plausible assumption of & linear velocity
profile very near the wall. In this approximation

00y Cx

Z

C(
p2

= f’w
iy ¥ P
end therefore
Cx ¥ Ct
Cf »

The mixing enalogy of Prandtl (19<6) and the similarity
hypothesis of Von Karman (1932) [7]’had provided an equation

‘5Cx(x,y) - Cp (%)
S = 7 for the mean velocity in the fully tur~
J [ C
r : ; s 4 1 J
o ,‘ = Co
bulent region, with the integral LZ ¢ in( 'R (X)) +

The unspecified characteristic lengtn yo(x) cen be chosen

equal to é?m as a part of tne dimensional argument already

mentioned. Therefore the above equation takes the form:

X 3 1 1“ (—_.'{_) +c ; ...--..-(2-3')
}) i

in which #& and C are two empiricul coustants to be deter-
mined experimentally - the numerical values given to these
constants are: 0.39 < #€ <0.41 and C = 5.1 . kquations(2.3)
represents the universal law of the wall specially for values
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¥ .Cg :
of P >50. On the other hand, the predominance of laminar
C y.Cp
shear near the wall requires Cx to approcach £ &s Y -

£
aepproches zero.

3~ Velocity Defect Law:

The description just given of mean-velocity profile in
& turbulent shear flow may be summerized in the formula:

b2
X = P o ) + hix,y) A R T )

where the function h is arbitrary except that it is negligibly
small in some finite region rear the wall - say for (y/5 )<
0.1, where § is the shear flow thickness.

For certain special cases frequently encountered (e.g.
uniform pipe and channel flow and the b.L. on a flat plate
in a uniform flow) equation (3.1) is found experimentally to
have the speciel form:

Cx e Cf
= fl————=0% g(F&F/51) e cha R
Cr &

where P is a parameter which is independent of x and y.
Profile similarity in terms of the argument (y/J ) is usually
expressed by a relationship known as the velocity defect law,
or more properly the moment defect law. Outgside the sublayer,
it is en immediate consequence of the logarithmic variation
of "f" in equation (3.2) that:

= P, y/§ ) PR . SV
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According to experimental evidence from many sources,
the defect function F(P, y/§ ) in & given flow is insensitive
to roughness at the wall. Despite that there is a small dep=-
endence of the defect law on the turbulence level in the
external stream,

4= The Wake PFunction:

The essentiel element is not to study the defect functien.:
"F" in Eq. (3.3), but to study the origional function g(P, y/&§ )
in Eq. (3.2), which gives the logarithmic law of the wall. An
extensive survey of experimental data at large Reynolds numbers
leads to the cruicel conclusion that this function can be
reduced directly to & second universal similarity lew. There-
fore, Eq. (3.2) may be written in the form:

Cz P(x)

C y
X ) +
2t

L
Ct l

w(y/gﬂ) Rl AP alis, s

where P is & profile parameter and the function w(y/ §) will

referred to es the "law of the wake", If P does not depend
on x, then both g (p, y/j ) in Eq. (2.5) are function of y/§
only. This is the property assigned to "equilibrium flows"
by F. Clauser 8] (flows with & defect law, that is, a flow
for which the paremeter P is constant).

In order to test the hypothesis of the universal wake
function in Eq. (4.1), it is necessary first to define the
thickness & end to specify some normelizing factor for W.
fhe maximum velue of w will occur very rearly at y/& =1,
minimum value is at y/§ = O and the area under the curve is
equal to unity. Therefore, it has been subjected to the fol-
lowing normalizing conditions:
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W(0) =0, W(Q1) =2

2

( (y/5 ) aw = 1 4 L essndesad
0

A disgramtic representation of Eq. (4.2) which states
the normalizing conditions is shown in Fig. (1).

4 s

'17/ .
oo

SN

!

¢ L] w 2

Pig. (1): Representation of the
normelizing condition

5~ The Velocity Profile IFor Fully Turbulent Boundary lLayers

Prom the previous deriviations, the mean-velocity profile
can be represented well by & linear combination of the two
universal functions, the law of the wake Lg. (2.3), and the
law of the wall Eq. (2.5). Neglecting the departure of the
flow in the sublayer from the logarithmic wall law, then

C e
y ;i In (<5) + C 4 P;x). W(y/g") «ee(5.1)
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k

At the outer edge of the, boundary layer, at y = 6', the
velocity component Cx = C. Substituting with these values at
the outer of the b,L., and applying the normalizing condition,
W(l) = 2. in Eq. (5.1), therefore

Ly
))Z) + C + 2;;(}{) Y By

,Ol

1
= —;C—.ln(

(P

Z

Equation (5.2) represents the relation between the profile
parameter P and the local skin friction coefficient (Cf=

202
7l

e, o

Substracting Eq. (5.1) from Eq. (5.2), there results is

P
_..C_:J.S_-. 2 _%_ In(y/y ) + 5g= 2= WY/3) eenen(5.3)

The velocity profile in that form describs a defect law
with a defect function, P(P, y/d ), equals to the right hand
side of Eq. (5.3) which depends, at x = const., on a single
parameter.

From Eq. (5.3), the velcoity distribution in the boundary
layer is given by

c 1/ z r 3 }'Z'__‘ -
X T (- | Ly 2P J VAR iy
s = l -, a l e = = — - W( / )
G 1P L e foc2 " %€ Y i
ALY N B —— wo. s e
I _ 11

ano.oa.'(Sl‘q’)
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The first term "I" (Eq. 5.4) represents the law of the
wall and the second "II"™ indicets the law of the wake from
which Cole's velocity profile consists. ZFigure (2) stats
Coles velocity profile, the dashed line represents the law
of the wall, Eq;(2.3). The dash-point line denotes the wake-~
like structure represented in Eq. (4.1). The associated
velocity defect (C - C) is given by Cro Pl [2- W(yﬂg‘ﬁ, and
the intercept at y = 0 of the equivalent wake profile there-
fore differs from the velocity in the external stream by an
amount 2 .C.. P/t . Since the turbulent motion in the outer
part of a boundary layer is effectively unrestricted and the
process of intrainment of non-furbulent fluid takes place by
processes very similar to those observed in wakes and Jjets,
the boundery layer may be viewed as wake flow, into which a
solid thin plate is placed at the central plane, the velocity
defect of tne wake being [Qw" C =2_C£.-P/ac] et the center.
At the surface of the plate the boundary conditions of vani-
shing velocity and molecular friction are to be satisfied.
These conditions impose an additional constr 8 int on the flow,
whogse effect is to modify the mean velocity profile as shown
by the solid line in Fig. (2). Near tne plate, where the
mean wake velcoity is nearly constaent, the constraint provi-
ded by viscosity preduces a flow pattern as described by the
similarity law of wall flow.

6~ Numerical Solution of the Velocity Profile: .
6.1- Mathematical Correlation on the Emperical Wake Formuls

In order to solve Eg. (5.3) numericaly, the profile
parametes P, the empirical const. 2 , the dimensionless wall
shear stress fw/fhaz, and the 'wake function w{y/y ) must be

known.
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Yor the profile perameter P values are given between
zero (for very strong accelerated flow) and infinity (separ-
ation), all inbetween velues can be described.

The empirical constant s¢, which regarded as = 0.4, was
found by Thimpson['9] to be a function of Hed** only for a
turbulent boundary layer over a flat plate with zero incident.
Following are values given by him:

6000 _1/8
% = 0,4 (—) for ke w«< 6000
Reéu é
0-.....(6.1)
a = 0.4 for ke . » 6000
while for boundary layers with definite pressure gradient
dp
( d;’ £ 0), Thimpson found that this relation is & function
of Regu-and P in the form
6000 2_pe
2 - 0,4 (———)1/8exp(0.557-F7) o, Ke < 6000
Red,w (6.2)
& = 0.4 for l-tea_w?/ 6000

Substituting with P = 0.55 in Eq. (6.2), gives the case of
flat plate boundary layers.

To calculate the dimensionless wall ghear stress Eq.
(4.2) is to be solved for the friction velocity CE and pro-
file parameter P.

The wake function w(y/J ) is given by Coles in a table
form and later by E.Strehle [10] in empiricel formula which
satisfy the first normalizing.condition w(0Q) = O but not the
second condition and gives for w(l) = 1;9. This regult has no
agreements with Coles's assumption, therefore a mathematical
correlation wag doen on Strehl's formula and leads to:



\ &
S\

3.F. Hanna, M.,S,. Saad El-Deen & R. El-Badrawy M.37

w(y/d ) = 2.124(.Y/a’)2 + 14.344(y/a’)3 - 30.027(y/& )%
+ 20.527(y/a‘)5 - 4.968(y/ 4 )6
R IR

and satisfies both velues for normalizing conditions.

6.2- The Sublayer Region

The sublayer region where viscous stress is predominant
and the flow departs from the logarithmic wall law and cons-
equantly from Colse™s velocity profile, for this region the
dimensionless group y.CT /A< 50, This region is defined
with the following formula

y 9 A Re()-mﬁ U’LMW/g 62

, — - 3/d)

from which

aﬁr* =
- /f_} WS
e&*’fz-h’/(_&‘

Equation (6.4) limits the value of the sublayer region which
is equal = 0.1 (y/4 ).

(y/J')sublayer > 50[

6.3~ Boundary Layer Paremeters

The mean-velocity profile in turbulent boundary layers
defined by Eq.(5.4) is the convenient form to evaluate the
different turbulent boundary layer parameters. Thege para-
meEers are such that the dimensionless displaiiment thickness

3/} , the dimensionless momentum thickness § /5 , the form
parameter le = éé;”‘and the shape parameter I.

6.3.1- Displacement thickness:

Generaslly, the dimensionless displacement thickness
is defined by equation
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1
5ﬁ Cx
0/ =f (1- Y )/ d(-g-.) 00000000(6.5)
'8 &

0
Substituting for ox/é in Eq. (6.5) its value given by
Coles Eq. (5.4) and noting that 1/beyfﬁ/9 C¢ = const, and
integrating by parts, gives

‘féa - L ‘l/ £W_ .01 + B) TRy L
fC

which is the dimensionless displacement thickness as &

function of the velocity profile parameter P.

6.3.,2= Momentum Thickness

The dimensionless momentum thickness is defined
by a similar equation

e il C C
d, = (1~ —=2). Caswnn s Wil
i = | Fa- = awld) (6.7)

(8]

Equation (6.7) may be performed to have the following form

( ( / - ( - )r ( / ) ( )
- = L= m——— g 1- . d 6.8
d/ L( — ) y d’ ) \g i y é-

o

Subgtituting for the velocity distribution in the boundary
layer Cx/ﬁ Colse's value, Eq. (5.4) and noting the definition
of the displacement thickness and integrating by parts,

follows 5 - 1
j: - = 22 s E-CWE il-'- PJ‘ LQ - w(y/o‘)]ln(y/d‘)-
% o

A '
A/5) + (= W/ AL e (6.50)

-

o

X Q4
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thus

*® L
Gl LR j;%—-( 1+ KP + KPP)  oo.. (6.9D)
§ § 2 Qc
The numerical values of K1 and K2 are obtained through analy-~
zation of equation (6.9a), their magnitude are K, = 1.6 and

K, = 0.761, so that
> L.
i 1 05 .- —H§ (1 + 1.6P 40, 761P%)
W e

WO R 8 14

Thus Eq,(6.1C) gives the momentum thickness as a function of

the velocity nrofile parameter I,
-*

o

—B-;,, ig defined also

ag a function of the profile parameter P by dividing iq.(6.6)
by (6.10), that yields

The convential form sarameter d12 =

!.I _ 1 ?_...-..
gt SEL ? (I + 1.6P + C.76107,
?o T+ P

fhis relation given by kq.(6.11) is useful to predict another

L (6.11)

convenient parameter, which is known as shape parameter "I,

degcribed by

(6.12)

which represents explicit relation between t'ie share parameter

"I" and the profile varameter "DV,

6,.3.3 Tilin PROGSUIE GRALDILHD PARAMNTER TT  AllD KULER NUNDBLR Y

The pressure gradient paramcter TI represents the ratio
between tThe preszure forces and the viscous forces at the
wall, also known as Hagen number. 1t is given in the emoirical

formulsa:
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T = (P - 0,55).(1.60456 + 0.420645PF) A a6 . B

This parameter is also depends on the profile parameter P.

The preceeding parameters lead to the definition of
Euler Number J\.. This number is the ratio between the local
pressure forces and the inertia force. Mor turbulent boun-
dary layer it is defined as follows:

- D B sl
¢ dx :

and is given in relation with the pressure gradient parameter
IT and the dimensionless wall shcar stress in the following

form Eﬁg}
N - g hfe PP R PPN R s e [
P

How the form of Eq.(6.14) is adequate for numerical computa-
tion through computer program,

»e
6.3.4 THE SLOPE CF THE OMINDUM TIICKN: 58 ad  /ax

Performing VON-Karman's momentum equation give an exp*~ .
licit form for the slope of the momentun thickness, woreover,
the Euler number is introduced in the momentum equation to
include the effect of the nressure gradient on the slope.

This form is:

(ﬁ? z, .
o2 v Dy CLire ginas i, 671 5)
dx 5 Pc

The foregoing Torm is valid for both laminar and turbulent
boundary layers., A computer orogran was made to give the
numerical solution of the above equations. These were trans-

lated into a FYRTRAN-4 language.
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7. ALEPRESENTAION AND DISCUSSICN OF RUSULTS

Results obtained from the computer program are c¢lassified
and represented in chart form. Some of the results obtained
will be reported and discussed as follows:

7.1 VARIATION OF Tils FOR PARALLTER #IPH BUL:R NUMBER 4\

Fjeoure{3)represents the variation in the form parameter
" c LY 3 T
Hyp = 6 /8, with Buler number,{\, and Reg* as a parameter.

The figure consists of five curves for boundary layer at five
values of the momentum thickness Heynolds numbers., The dash
point line revpresents boundary layers at velocity profile
parameter P = C,0 or boundary layers at very =zccelerated flow
with negative pressure gradient (dp/dx <« 0).

7.2 Tdi LOCAL SKIN FRICTION JITH LULER HU.BLI

Fig.4 i11lustrate the rclation between the local skin
friction coefficient c,/2 ='fm/§’62 and Euler number with the
Red*.as narameter. The figure"contains curves for turbulent
bounaary layers at twelve values fron Red“ as reonresented
in Fig.4.

For bouandary layers at the same Re 4 the gkin friction
coefficient decreses for Luler number increase because of the
increase of the form parameter with Zuler number increase. For
boundary layer at the game Zuler number, the local skin fric-
tion coefficient decreascs with Re» increase, For example,
in flat plate boundary layers, where N = 0,0, the local skin
friction coefficient gecreases from cf/2 = 0.0055, %o cf/2 =
0.0007, for Reew = 10 . The dash-point line represents boundary
layers at velocity profile parameter P = O or very accelerated
boundary layer. -

7.3 Tk PRLSSULE GRADTHT PLOIAMETER AND THE SHAPS PARAMETER

- POR EQUILIBRIUL BOUNDARY LAYERS

The presgsursg gradient parameter Il could be driven exact
from the energy equation, The parameter "I" was found to be a
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guitable shape parameter for turbulent boundary layers velocity
profiles, so that exists a relation I = I(TI). Another depen-
dance exists between the pressure gradient parameter I1 and

the velocity profile parameter P, Pigure 5 presents this rela-
tionship in which TI increses with the increase of P. The
curves intersects the vertical axis at P = 0,55 and TI = O,
This point represents the case of turbulent boundary layers

on flat plate with zero pressure gradient. For P< 0.55, which
presents boundary layers with negative pressure gradient,

TT has negative values as shown in Fig.5.

Figure 6 gives the relation between TI and I for boundary
layers at Re . > 6000, It was found that the presgsurse gradienf
parameter II lies between (-0.5 <« II &« 250) for equilibrium
boundary layers.

7,4 PREDICTION OF TH. MOMENTU . TATCKNLSS

FPigure 7 reoresents the relation hetween BLuler number
and the slope of the momentum thickness dd"/dx with Re
as a parameter. The chart contalns five curves for boundary
layers ar Regm= 3. 102, 102, 104, 10° ana 10°.

FPor the same values of & = constant, the values of as 7 ax
increase with the decrease of Re.**, Bach curve can be devided
into two devisions. First devision, the slope of the curve is
posiltive and apnroximately constant, this means tho increse
of the slope 46" /dx with the increase of A . Second devision,
the slope of the curve becomesn sharp, that meane large increase
in the slope of dd"/dx for small increase in ., °

This deslgning charte are of practical use in the predic-
tion of the momentum thickness, by applying the imocline method,
This estimation method gives an indlcation nbout the ekin
friction coefflicient over smovth surface,

CONCLUSIONS

The present work deals with the theoretical study of the
velocity profile and othor parameters which affect the behaviour
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of the turbulent boundary layer. This was achieved using the

modified Coles velocity law. As a result of the present inves-

tigation the following conclusions are obtained:

1~ The modified Cole's.: velocity law in its new formula beconmes
valid for turbulent boundary layers at Reg > 6000,

2~ The wall velocity component is very large near the wall and
decreases with the increase of y/G . Alseo it decreases with
the increase of the velocity profile parameter P,

3- The wake velocity component is very small near the wall and
increases with the increase of y/é.. Also its value incres-
ses with the increase of P until the velocity profile becomes
a pure wake velocity profile near the separation.

4- I'or boundary layers at the same He xy , the velocity decrea~
) ’
gses with the increase of the velocity profile parameter P,

5= For boundary layers at the same velocity vrofile parameter,
the velocity profile increase with the increase of Reélﬁ.

6~ The velocity profile parameter increaszes with the increase
of Euler number A\ and Rerv 2

7~ The form parameter ﬂ12 increacges with the increase of suler
number A but it decreases with the increase of Redf*and
it takes value H1qg:4 near geparation.

F

8~ The local gkin friction cocflicient cf/E decreases with
the increase of both Zuler number A and Reénﬁ.

9- The velocity profile parameter and shape parameter 1 are
increasing with the increuse of the pressure gradient para-
meter IT,

; gL o, s
10- The slope of the momentum thickness d¢  /dx increases with
the increase of Luler numbqrf\&uﬁ decrease witih the in-

crease of Heé;,.
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Figure!6] Shape parameter versus pressure gradient parametler for
furbulent boundary layee at Re?,_a 6000
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Figure{7 ) Slope of the momentum thickness versds Euler number wilh
momentum thickrness Reynolds number as parameter
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