Preparatory year Mathematics (2) BAS 1021

Answer the following questions

Question $1 \quad 32$ manks

a) Complete each of the following:

12 marks.

i) The substitution used to evaluate the integral $\int \frac{1}{x^{2} \sqrt{4+x^{2}}} d x$ isor \qquad
ii) The method of evaluating the integral $\int \sqrt{8 x-x^{2}} d x$ is \qquad
iii) The method of evaluating the integral $\int \frac{e^{x}}{e^{4 x}-1} d x$ is
iv) If $\int e^{f(x)} \operatorname{sech} x \tanh x d x=e^{f(x)}+c$, then $f(x)=$ \qquad
v) $\int \frac{1+\sin ^{-1} x}{\sqrt{1-x^{2}}} d x=$
vi) $\int \frac{\tan x}{\sqrt{1+\ln ^{2} \cos x}} d x=$ \qquad
b) Evaluate each of the following:

12 marks

i) $\int \frac{x^{2}+2 x}{\left(1-x^{2}\right)^{3 / 2}} d x$
ii) $\int \ln \left(x^{2}+1\right) d x$
c) Find the volume of the solid generated

8 marks

 by revolving the shaded area about the x-axis.
Question 233 marks

a) Evaluate each of the following

12 marks
i) $\int_{-1}^{e} f(x) d x$, where $f(x)=\left\{\begin{array}{lc}\frac{\ln x^{x}}{x^{2}}, & x>1 \\ x^{8} \sin x, & x \leq 1\end{array}\right.$
ii) $\lim _{x \rightarrow 0}\left(\frac{\int_{0}^{x^{2}} \sinh ^{-1} \sqrt{t} d t}{1-\cos x}\right)$
b) Find the area of the shaded region

2 marks

c) The equation $\mathrm{S}=2 \pi \int_{0}^{\pi} \boldsymbol{h}(\boldsymbol{x}) \sqrt{1+\cos ^{2} x \mathrm{e}^{2 \sin x}} d x$, represents the area of the surface generated by rotating an arc passing through the point $(0,2)$.
Using this equation, complete each of the following:

12 marks

i) The equation of the arc is $y=$ $\leq x \leq$ \qquad
ii) If the axis of rotation is the y-axis, then $\boldsymbol{h}(x)=$ \qquad
iii) If the axis of rotation is the x-axis, then $\boldsymbol{h}(\boldsymbol{x})=$ \qquad
iv) If $\boldsymbol{h}(\boldsymbol{x})=x+1$, then the axis of rotation is \qquad
$v) \quad$ The given equation gives value of the length of the arc if we let $h(x)=$

(m) . . nd the equation of bisectors and the angle between the pair of lines: $x^{2}-y^{2}=0$.

b) Find the equation of parabola whose focus is $(0,0)$ and its directrix is: $x+y-3=0$. Sketch the parabola and find its main axis.
c) Identify the conic curve: $x^{2}-2 x y+y^{2}+6 x+6 y-9=0$.
d) An architect designs two houses that are shaped and positioned like a part of the branches of hyperbola whose equation is $625 y^{2}-400 x^{2}=250000$. How far apart are the
 houses at their closest point?. Find also, the asymptotes of the hyperbola.

Question 4 [31 Marks]

a) Find the eccentricity of the conic section whose parametric equation is: $x=2+3 \cos t$ and $y=3+2 \sin t .0$
b) In Fig. 2, $A B$ represent the major axis of the ellipse where $A(10,4), B(2,4)$ and $F_{l} F_{2}$ represent the diameter of the circle where F_{l} and F_{2} are the two foci of the ellipse. Find the
 equations of the circle and the ellipse if: (area of the circle) $=\frac{3}{2}$ (area of the ellipse) [Remember that the area of the ellipse $\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1$ is $\pi a b$].
c) Find the equation of the perpendicular bisecting plane to the line segment $A B$ where, $A(2,2,2), B(-2,-2,-2)$. Find also the equation of the line $A B$.
(مطوب معادلة المستّوى العوودى على القطعة المستقيمة من منتصفها)
d) Find the equation of sphere whose center is $(1,3,5)$ and touches the $x y$-plane. Find the points of intersection of the sphere with z-axis.

