Menoufiya University

Faculty of Engineering Shebin El-kom

Course: Control of Electrical Machines Date: 26/ 5/2015

Mark:70 Time: 3-Hour

Final-Term Exam

Answer the following questions:

Question (1)

20- Mark

- 1-1) Derive an expression for minimizing the losses in a separately excited dc motor, and draw the block diagram of minimum loss control of a dc drive.
- 1-2) The speed of a separately excited dc motor is controlled by a single-phase full-converter. The field circuit is also controlled by a single-phase full converter and the field current is set to the maximum possible value. The ac supply voltage to the armature and field converters is single-phase, 220 V, 50 Hz. The armature resistance is $R_a=0.25 \Omega$, the field circuit resistance is $R_f=175 \Omega$, and the motor voltage constant is $K_v=1.4$ V/A-rad/s. The armature current corresponding to the load demand is I_a =45 A, the viscous friction and no-load losses are negligible. The inductances of the armature and field circuits are sufficient to make the armature and field currents continuous and ripple-free. If the delay angle of the armature converter is α_a =60 and the armature current is I_a =45 A. Determine the (a) Torque developed by the motor, T_d ; (b) Speed, ω ; and

(c) Input power factor of the drive, *PF*.

Ouestion (2)

20-Mark

- 2-1) Draw and explain the closed-loop speed with inner current loop and field weakening control of a dc motor.
- 2-2) A 40 KW ,220 V ,1100 rpm ,separately excited dc motor is to be used in a speed control system, which may be represented by the block diagram in Fig.(1). The field current is held constant at a value for which $K_r I_f = 1.95 \text{ V}$ s/rad. Resistance $R_a = 0.089 \Omega$ viscous friction factor B=0.275 Nm-s/rad. The tachogenerator delivers 10 V/1000 rpm and the gain of the controller, is $K_1 = 200$.
- (a) Determine the value of the reference voltage, V_r , required to drive the motor at rated speed at no load.
- (b) If the reference voltage is unchanged, determine the speed at which the motor would runs at rated torque.
- (c) If the motor is driven with constant armature voltage of 220 V, and without feedback, determine the no load and full load speed.

P.T.O.

Figure (1) Steady- state closed-loop block diagram of a speed control system.

Question (3)

20-Mark

3-1) A thyristorized speed control scheme is shown in Figure(2). Make a model of the control system for studying the performance.

The following values are known:

Moment of inertia of the load, $J = 42.2 \text{ kg-m}^2$;

Torque constant of the motor, $K_v = 4.2$ Nm/amp.;

Motor armature resistance, $R_a = 0.035 \Omega$;

Motor armature inductance, $L_a = 0.0077 H;$

Thyristor bridge is fed from 3-phase, 415 V, 50 c/s;

+ 5 V to the trigger circuit advances the pulses to give maximum output voltage; 0 V to the trigger circuit retards the pulses to give zero output voltage;

Tachogenerator constant,

 $K_t = 10 \text{ V}/1500 \text{ rpm}$;

DC C.T. output

 $K_r = 5 \text{ V/50 A}$;

 R_1 =one mega-ohm,

 $R_2 = 50 \text{ K} \Omega$, $C_1 = 0.1 \mu\text{ F}$

 $R_3 = 500 \text{ K}\Omega$,

 $R_4 = 50 \text{ K}\Omega$, $C_2 = 0.04 \mu \text{ F}$.

Figure (2) Feedback control system.

3.2) A 2.5 HP, 100 V, 1500 rpm dc series motor is controlled by a class A chopper, which is considered as a linear converter of gain $K_c=120$. The moment of inertia of the motor load J=0.065 Nm./rad/s, viscous friction constant B=0.004 Nm- sec/rad. Total armature circuit resistance, $R_m=1~\Omega$, and total armature circuit inductance (including series inductance), $L_m=0.32~mH$. The back emf constant is $K_v=0.034~V/A$ - rad/s.

- (a) Obtain the open-loop transfer function $\frac{\Delta\omega(s)}{\Delta V_m(s)}$ and $\frac{\Delta\omega(s)}{\Delta T_L(s)}$ for the motor.
- (b) Calculate the motor steady-state speed if the reference voltage, $V_r=1\ V$ and the load torque is 60% of the rated value.

Question (4)

10- Mark

In control of induction motor drives, explain (with sketches) the concept of the Field Oriented Control (FOC).

Good Luck Prof. Dr. Sabry Abd Ellatif