Answer the following questions [Full Marks 110]
Question 1 [30 Marks]
(a) Find the orthogonal trajectory to the family of curves $y=c e^{\tan ^{-1} x}$
(b) Are the two functions $e^{2 x}$ and $e^{-2 x}$ linearly independent? Explain why? [3 marks]
(c) Find the general solution to the Bernoulli D.E. $x y^{\prime}-4 y=x^{2} \sqrt{y}$
(f) Find the general solution to the Cauchy - Euler equation $x y^{\prime \prime}-x y^{\prime}=x^{2}$.
(d) Find the particular solution $\left(y_{p}\right)$ to the fourth order D.E. $\left(D^{4}+3 D^{3}-5 D^{2}+D-4\right) y=8 x+1$
[5 marks]
(e) Find the complementary solution $\left(y_{c}\right)$ to the third order D.E. $\left(D^{3}+2 D^{2}+4 D\right) y=\tanh ^{-1} x$.

Question 2 [25 Marks]
(a) Find Laplace transform to: (i) The signal shown in Fig.

$$
\text { (ii) } f(t)=t e^{-2 t} \sin 3 t
$$

(b) Find the inverse Laplace transform to: (i) $F(s)=\frac{s^{2}}{s^{2}+9}$
(ii) $F(s)=\ln \left(\frac{s^{2}}{s^{2}+9}\right)$ [5 marks]
(c) Evaluate the improper integral: $\int_{0}^{\infty} \frac{1}{t} e^{-\sqrt{3} t} \sin t d t$.
(d) Prove that if $L(f(t))=F(s)$ then, $L\left(f^{\prime}(t)\right)=s F(s)-f(0)$.
(e) Use Laplace transform to obtain $u(t)$ and $v(t)$ satisfying the system of equations:

$$
\begin{array}{ll}
\frac{d u(t)}{d t}-v(t)=0, & u(0)=0 \\
2 u(t)+\int_{0}^{t} v(t-\tau) d \tau=3 t^{2}
\end{array}
$$

. يسمح بالإجابة بالقلم الرصاص و الإجابة باللغة العربية عند الحاجة

Question (3) [25 marks]

(a) Complete the following sentences:
(i) The quantity $\lim _{\alpha \rightarrow 0} \frac{f(x, y+\alpha)-f(x, y)}{\alpha}$ is called and its physical meaning is
(ii) At a point $P,\left.\nabla f\right|_{P} \odot(\cos \theta \boldsymbol{i}+\sin \theta \boldsymbol{j})$ is called...... and its physical meaning is
(iii) The zero change of a differentiable function at point P occurs in the direction
(iv) The quantity $\lim _{\Delta x \rightarrow 0, \Delta y \rightarrow 0} \sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i}, y_{j}\right) \Delta x \Delta y$ is \qquad
(v) In Figure(1), the curve tangent to the family circles is called \qquad
(vi) The sign of the divergence of the vector field shown in Figure (2) at Point P is \qquad and the point is called \qquad and the sign at point M is \qquad and the point is called. \qquad
(vii) The vector field shown in Figure (2) is irrotational at point. \qquad because \qquad
(b) Find an approximate solution of the equation $y=0.01 \cos (1+y)+x$
(c) Find the extreme values of the function $f(x, y)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$.

Question (4) [30 marks]

(a) Evaluate $\int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^{3}} d y d x$
(b) Compute the mass of the solid bounded by the planes $x=y^{2}+z^{2}$ and $x=16$ if the density function is given by $\rho(x, y, z)=\sqrt{y^{2}+z^{2}}$
(c) Find the flux outward of the surface of the sphere $x^{2}+y^{2}+z^{2}=9$ of the vector filed $\vec{F}(x, y, z)=\left(x+z \frac{y^{x}}{\ln (y)}\right) i-\frac{z y^{x+1}}{x+1} j+(4 z+y x) k$.
(d) Evaluate the work done by the vector field $\vec{F}(x, y)=\left(e^{x} \tan ^{-1} x+y\right) i+4 x j$
in moving a particle along the curve C shown in Figure (3).

Figure(1)

Figure(2)

Figure(3)

[1]-(a) [10 pts] Solve by any method

1. $x^{2} y^{\prime \prime}+x y^{\prime}+y=0$
2. $\quad\left(6 x y-y^{3}\right) d x+\left(4 y+3 x^{2}-3 x y^{2}\right) d y=0$
(b) [5 pts] Find the orthogonal trajectories of

$$
x^{2}+y^{2}=a y, \quad a \quad \text { is an arbitrary constant }
$$

(c) [5 pts] Set up the appropriate form of a particular solution y_{p} (Undetermined Coefficients), but DO NOT determine the values of the coefficients.

$$
y^{(5)}-3 y^{(4)}-y^{(3)}+11 y^{\prime \prime}-12 y^{\prime}+4 y=\left(e^{x}+e^{-3 x}+x\right) e^{x}
$$

(d) [5 pts] Determine the shape of the deflection curve of a uniform horizontal beam of length L and weight w per unit length and fixed at $x=0$ and free at its other end.
[2]-(a) [12 pts] Find the Laplace transform of the following functions

$$
f_{1}(t)=\frac{\cos 3 t-\cos 2 t}{t}, \quad f_{2}(t)=t e^{-t} \sin ^{2} t
$$

(b) $[8 \mathrm{pts}]$ Find the inverse Laplace transform of the functions

$$
F_{1}(s)=\frac{2 s\left(e^{-3 s}-e^{-2 \pi s}\right)}{s^{2}+10}, \quad F_{2}(s)=\ln \frac{s^{2}+1}{s^{2}+9}
$$

(c) [5 pts$]$ Find the current for all values of $t \geq 0$ in the LC circuit

$$
L \frac{d l}{d \cdot t}+\frac{Q}{C}=E(t)
$$

with $I(0)$. $=I^{\prime}(0)=0$. Using the given data

$$
L=1 H, \quad C=0.04 f, \quad \text { and } \quad E(t)=100 v
$$

Assoc. Prof. Dr. El-Gamel

Question (3) [25marks]

(a) Complete the following sentences:
(i) The quantity $\lim _{\alpha \rightarrow 0} \frac{f(x, y+\alpha)-f(x, y)}{\alpha}$ is called and its physical meaning is
(ii) At a point $P,\left.\nabla f\right|_{P} \odot(\cos \theta \boldsymbol{i}+\sin \theta \boldsymbol{j})$ is called...... and its physical meaning is
(iii) The zero change of a differentiable function at point P occurs in the direction
(iv) The quantity $\lim _{\Delta x \rightarrow 0, \Delta y \rightarrow 0} \sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i}, y_{j}\right) \Delta x \Delta y$ is
(v) In Figure(1), the curve tangent to the family circles is called \qquad
(vi) The sign of the divergence of the vector field shown in Figure (2) at Point P is \qquad and the point is called \qquad and the sign at point M is \qquad and the point is called........
(vii) The vector field shown in Figure (2) is irrotational at point. \qquad because. \qquad
(b) Find an approximate solution of the equation $y=0.01 \cos (1+y)+x$
(c) Find the extreme values of the function $f(x, y)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$.

Question (4) [30 marks]
(a) Evaluate $\int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^{3}} d y d x$
(b) Compute the mass of the solid bounded by the planes $x=y^{2}+z^{2}$ and $x=16$ if the density function is given by $\rho(x, y, z)=\sqrt{y^{2}+z^{2}}$
(c) Find the flux outward of the surface of the sphere $x^{2}+y^{2}+z^{2}=9$ of the vector filed $\vec{F}(x, y, z)=\left(x+z \frac{y^{x}}{\ln (y)}\right) i-\frac{z y^{x+1}}{x+1} j+(4 z+y x) k$.
(d) Evaluate the work done by the vector field $\vec{F}(x, y)=\left(e^{x} \tan ^{-1} x+y\right) i+4 x j$ in moving a particle along the curve C shown in Figure (3).

Figure(1)

Figure(2)

Figure(3)

