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NUMERICAL SIMULATION OF FLOWS IN AN ENGINE CYLINDER WITH AN
ECCENTRIC DEEFP B80WL COMBUSTION CHAMBER DURING COMPRESSION
(lst Report, FORMULATION AND ALGORITHM)
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ABSTRACT

This paper describes another step in the numerical simula-
tion of the in-cylinder gas flow In the real reciprocating en-
gine cylinder. The deep bowl combustion chamber in the piston
which Is axisymmektric in [(l]! is shifted here to be eccantric to
the cylinder axls and the three dimensional unsteady alir motion
during the compressicn stroke ils predicted. By the use of the
conformal mapplng a speclal coordinate system ls chesen in order
to make the eccentric bowvl axlsymmetric, then by the use of the
perturbation method and Fouriexr expansion for the dependent vari-
ables the three dimensiaonal problem ls transferred to a group of
twvo-dimenslional problems which are bounded together. Predictions
were carried out usting a £inlte difference method to solve the
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qoverning differential equaticons for contlinulty and momentum. A
movable grid system is employed and the alternating direction lm-
plicit method (ADI} was used for the pressure correction. A com-
puter program system EBSTR was developed £or this case. In the
second report numerical computation is made for a typlcal case
and the resulfs are discussed briefly [1l1l].

1. INTRODUCTION

The investigation of the gas flows in the cylinder of the inter-
nal combustion engine ls onz of the most important ways to real-
ize 1low pollution and high combustion efficlency. Since the 1in-
cylinder flows are in a very compllicated three dimensional turbu-
lent state, there are many barries te reveal the flow only by
experimental study. Therefore, recently the method of flow analy-
sis by a computer has been developed. So far, however, most of
the f£low analysis have been performed on the axisymmetric or twa
dimensional flows [11-171.

The aim of this study is to simulate numerically the three-
dimensional flow of the eccentric deep bovl combustion chamber of
the direct injection diesel engine during the compression stroke.
This ls another step In approach to the gas flow in the real
cylinder of the four stroke engines by making the deep bowl in
piston which is axlsymmetric in [1] eccentric to the cylinder
axis., This part of the paper describes the formulation of the
problem and the mwekhod of the numerical analysis, while the
second part (111 cglves the results of sample calculation for a
typical small direct injection dlesel engine.

2. MATHEMATICAL HMODEL
2.1, Coordlnate systenm

A special coeordinate system (R,6,z) is chosen in which the
accentric deep bowl combustion chamber will be axisymmetric, this
will make the boundary conditions easy to be handled and also the
discretisation error will be very near to zero. The cylinder wall
and also the bowl wall will have constant radial values R.=const.
This will be done by the conformal mappling as shown In Fig. 1-3.
The zero polint of this coordinate system does not coincide with
the center of the bowl or the center of the cylinder as shown in
figures 2 and 3 but it lies at the symmetrical plane at x = - &
wvhere ¢ ls an eccentric parameter which 1is assumed to be small.
As the eccentric parameter & tends to be zero the bowl axis tends
te colncide with the cylinder axis and also with the z-axis of
the coordinate system R,8,z and when € =0 the coordinate system
R,8,Z will coincide with the normal cylindzical system. To da
this, we define first in the z plane the complex variables w.r
as follows

v = 3 +-ly and % = § + lq

vhere § = ( w+g }/( gwtl) and the reciprocal 5=(‘72—E }/(L-BE ).
In these planes the circle [y l=1 and | | "=Rp" in the {-plane
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2 .2
represenkt as shown ln Eigure 2 the clrcles |wl=1 and |v(f)+al =Ry
constant in the w-plane. For these tcelations the variables £ ,R
and 8 can be expressed as a function of a,x, s and y.

2.2 Governing eguations

The f£1luid density is assumed to be spatially uniform over the
flow field buft time dependent. The true flow fleld inside real
internal combustiocn engines might be reascnably modeled wvia a
large 1inviscld core plus a very small viscous boundary layer at
the walls, as conventially done ln aerodynamics. Thus the invis-
cid flow 1s investigated here.

The governing equations will be the continuity and EBuler
eguations. For the cartesian coordinate X,Y,z which wlll be
oriented at every point due to the direction of the cooxdlinates

= constant and ©=constant as shown Iin Flg. 4 +the differential
equations will take, llke in any cartestan coordinates, the form:

QH + U QH + Vv QH + W QH + QE = 0

ot X av dz  3x

av + U v + vV av + W av + Gl =0 (1)
3t ax oY 8z oy

Qﬁ + U Qﬂ + vV Qﬂ + W éﬂ + QE = 0

gt ax ay dz dz

gy— + Q-Y- + —a-j:"- + E._..Etj. = Q (2}

ax ay dz e 4¢

where P iIs the pressure divided by the denslty

[£ B is the angle pbetween the coordinate axis R=censt. and X=
const. as shown in Fig.4, the relation between the veloclty com-
ponents u,v,w ln Ehe coordlnate system R,8,z and U,¥,® 1in the
coordinate system X,Y,z will take the form:

U= uvucos 8 - v sin 8
V= usinB + v cos 0 (3}
W o= ow

Using eguwation (3) and the relations between the twe coor-
dinate systems the governing equatilons (l) and (2} car be trans-
formed and written in the coordinate system R,9,z as follows:

du +u 3y Y - u.v. 08 + v.i. du vvz.i L 3u + FQE =0

at ar ar R B8 R d0 dz dr

v + U.F[u QE + QXJ + V. E [Qi + u QEJ + W QX + i QE = 0 (4)
3t 3R OR R Lde de 3z R 3¢

Qﬁ + u.g. Qﬁ + v i éﬁ + W gﬁ + gﬁ a2 0

8t dr R 99 dz dz
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@-t—{.p:é-_a_v'.a_‘”.-.v.a‘-a_ﬂq.ld_oh = la]
R R 38 0z ar R 4t
where ¥ = 1 -~ 2ER cos@  + E2 R2

1 - g2

2.3 Integratlon area

Figures 1 and 4 show the Integration area with 1its bound-
aries which consists of the axis, cylinder head, cylinder wall,
piston crown, bowl wall and bowl bottom.

Durlng the motion of the piston in a fixed z coordinate the
boundarles of the integration area will vary with the time. To
avold an lncomplete coverage of the wall boundarles in the com-
putational grid which will be discussed in 3.2. a movable cooxr-
dinate z' is used in the axial direction to make the boundaries
of the integration area time independent whers

z°= % ¢ 0o £z°%c,, 0%z %h
h 1 1

z°=z+¢; -h ¢ = z7< ¢y + by, N <z <h 4+ by

The governing equaticns will be transformed to the time nov-
able coordinate system in which evezy polint has an axial veloclity
in the cylinder, that is the same velocity of the grid point ¥g
in Fig.4. The time derivatlive £for the movable coordinate wili
take the following form:

9_ = Q— + W Q— - (5)
at | mov ot | Fixed 9 3z
where w_ = = w for 0 £ z % h
g h p
and wg = wp for h € z € h + bl

This will change the governing eguation (4) by only an excess
derivative term in the convection form in the axial directlion.

2.4 Governing equations by small eccentricify of the bowl

Equations {4) will be solved by the perturbation method.
Taking the eccentriclity as a small perturbation parameter ang
restricting the solution on the linear terms of £ , the veloclty
components u,v, w and the pressurte P can be wrilitten in the fol-
lowing form:

F(R,8,z) = Fu(R,2z) + EF)(R,9,2) . {6)

The first term F,(R,©) represents the Independent term of 8

for the velocities u, v, v and the pressure P. This term casts
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the symmetzlical flow (the main £flawl). The second term F;(R,0,z)
represents the additional term which expresses the deviation of
the flow frxom the symmetrical case {the disturbance term}.

The additlional terms Eor the velocities and the pressure
wvhich depend on 8 will be developed Iin Fourier series and
restricted on the first harmonles of the coordlnate 8

t F1(R,9,2) = F3p(R,z) + F11(R,z) cos & + Fi3(R,z) sin & {7}

In this seguence the three dlmensional wvariables F(R,9,z}
are bransformed to a group of two dlmenslonal varlables Fg, Fig.
Fi1, F172 which are coupled together.

Making use o0f equations (5)~(7) in equation (4) and collect-
lng only the coefficients of the zeroth and Elrst order terms of
and the coefficients of the first harmenies cas 6 and sin 8, we
get three grocups of equations, Expressing the variables which
have the form Fjj3, F;3 by the form F3; and Fp and to make the han-
dling of these equations does not need very 1long discretising
fcrms and many speclal forms in the numerlcal solution these
three groups of equatlons will be expressed by using a number of
aperators for the speclal terms as follows:

Buo .

5—{—-— = NO(Uo,ﬂg] - GOPO

CIT o . . (8)
—¥— &= Ni(ul,uo,wg) + Mi(uz,uo,Po} - GOP1 - G,P,

at, . o

g:— = Ni(uz,uo,wg) + Mz(ui,uo} - GOP2 + Gipi

and the contlnulty equations as follows:

o
ol

o u_ + i = O
o*é g it o0
Do”i + Diu2 - ZR ag— = 0
B, = 0,0, - 2v, =0 )
uy u _ Uy
where G; = v, , Gi > |vy| and Gy = (v,
W wy W,

The definltions of Cthe convection operators Ny, Ni,My,Mz,
the gradient operators G,, G) and the divergent operators bg,Dj
can be expressed by using ¥, T, g, £ for the vector and scalar
gquantities as follows:
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- 38 T
Ny{ueg) = -u w (9-w) —= + |~uv/R {10)
0
3 = > - - 2v.b/R ]
Ny (3,0,9) = -u %, (g-w) 3% L. g0, -{u.b+v.a)/R|(11)
BR z IR o=z Q !
. . . | |
M (8.0, f) =2Ru§5-[o] PTUR LR SV + ,
oRrR 0 3R R (12)
[V
My (F,0) = Load.21..° {13}
R
D% . LO{e.R)  dc.R} and Dlg=’ b (14)
© R B3R 3z R
af o
R (15)
G f = gR and Gif a %
¢ af
o0z 0

-] - u
where 3 = [ b and U = |v
c had

2.5 The Boundary and inltlal conditions

The boundary conditicne express the global features of the
In-cylinder flow, only special condition occurs at the axis. The
velocities uy and vy and also uy and vj are coupled together in
such a way to make the velocity contours smoothly £low along the
axis, These boundary conditlons are summarized as follows:

Ugsvg = 0, up + vy =0, uy + vy = 0, wy=wp=0, Aw,/0R=0 at the axis
Us = U3 = ug at the cylinder and bowl walls

Wo = Wi = wg at the cylinder top

Wg = W,, W] = w2 = 0 at the piston crovwn and bowl bottom

[}
apofanp= 0 at all boundaries,
p1 = p2 =0 at the axis while 8p3/9n = 9pp/3n = 0 at all other
boundaries. where n is the normal coordinate to the boundary.

The Lnitial condltions are given Lto the quantlities at the
time of inlet valve closing as a forced vortex having a swirl
ratio wy which is assumed to be constant in the axial directlon.
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3. S0LUTION ALGORITHM

3.1 HMethod of solution

For the numerical time integxation there are many methods,
but to wake the requirzred ceowmputer capacity not very big the
simplest explicit one direction forward method will be wused and
the value of the velogity vector Uy, Uy and G% at the time t+bdt

’ 1

Is calculated Erom the veloclty vectors Ug' ' and W' at the
time t

4, = + st 3uy/ot (16)

901/t can be calculated only when the pressure

ause the pressure is not known at first,
will be used.

From the fact that the nev Uy at the time t+St must satisfy
the continulty eguations (9), then by substituting d; in these
equations 1t will take the feollowlng form

is known. Ba-
the following algorithm

-

: du
- 1 dR
D u + i QQ a D (ul + §¢ —= )+ =— =0
a o Q dt o c at 3 de B--, -
aU aui - U2 UO
- [¢] . * —= | -2R =0
- - _a D U +dt ]+ D [u <3t ]
Dou1 + DIUE 2R " = 0[ 1 3t 1 .2 At BR
[ %53 e s Uil <o
T DL - =0 {uo+9¢ J -0 [u'+ t - =
DgUp=0yty~2Vo=Bg [U2*0t 0 L7t at ° (17)

Taklng into c¢oanslderation equation (16} and with the use of the
relations

-,

ED = ul o+ ot No(uo.wg) i

- > . . e +M G’ U’rP )

32 . ;»2 + 5t [“1faé'aé'“g)*szu1'”c)]
for the convection term and also

po = st.Po , pl= st.P1 and p2 = st.P7Z {19}

equation (17} will glve for the pressure the following relations

a1 de
DOGOpO- Doqo-l- -6' ;—; .

- - aué
(DOGO_DIGI) Py = Daq1+ qu2 ~ 2R EE_ {20}
(DOGO‘_DIG]-) 02 = Daqz"‘ qu - 2Vé
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Eguation {20) 1is an elliptic eguatlion from Poisson's type
and is used to calculate p by the known right hand side . This
aguation will be solved by iteration by using the ADI method [8].
By +the calculated value of p the velocity T; can be calculated
by the equation (21]).

uo = qO - Gopo
Uy =Gy - Gy = G1Pp (21)
52 =d, - G Pp *+ G1Py

3.2 Diskretisation of the differential equatlons

for the discretisation of the geoverning eguations two dif-
ferent two dimensional staggard grids in the way discussed by
Stephens et al [9) are used for the vector and scalar variables
as shown in Flg. 5. The crosses (+) represent the polnts of the
grid S for the vector field and the points (.} represent the
point of the grid 5:q for the scalar £ield. The calculation of
the convection terms and the pressure gradient will be at the
polints of the grid ¢g and the satlsfactggn of the conktinuity
equation will be at the points of the grid §g. Variable axial
spacing is used to allow Eor the change of the distance between
the cylinder head and the piston crown, while a fixed grid system
is used for the space Iin the plston bowl. The number of the
axial nodes is varied during compresslon to avoid the exremely
small spacing between Lt [1}.

To express the dlscrete operation which are used in equa~
tions (17)-{21) wlthout making many speclal forms, the folloving
definitlons will be taken into consideration

a for as> 0 dC for 1 §k<|_3
(a)" = [ " [
0 forasoQ dy  for Lg S k 4 by
£
. ) wp(k—l)/(L3-1) for k &= L,
gk [ wp fOI" k '} L3
R 1- ) 4
Ri = {1-1) dR P Ry = ( 5 R

The convective operators Ny, 3, M1 and M3 will take the
following dlscrete forms )
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(M (2w )]y = E_"[(ui.k)-(“1,k“”1-1,k)+(_ui.k)'(”i.k’“i+1,k}]
R

v a 2R 1
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0 . {24)
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1 == 2
[Hz(a’u]]i‘k= —-—-—-R .Vi'kaal'ki- 2 "'Ui'k -
1 0 ¢
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e
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(cof]1 y I 0
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le, 1] -
1 74,k
2 Ry(d, _ 4¢, )

O =» O
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Fig. 6 shows the values of the function £ which is wused in
equations (26} and (27) to calculate the gradient filelds G E and
G1f at the point P; i € Sig

Fig. 7 showvs the velocity components which are used to cal-
culate the discrete forms of the diverging operators Dol and Di2
at the point py g ea@ according to the definition of equation
(14) as Eollows

[Do“ ]i,k: ~ }_—-1—(“1+1,k+”1+1,k+1)' d— (“1,k+“1,k+1)

R R
i+l i _
(wi+1 k+2_wi+1,k) * {wi,k+1 wi,k) (28)
d ¢ d
k I
1

al. .= — (
[Dla]l-k 4Ry (bi+1,k+1+bi+1.k+bi.k+1+bi.k) )

A computer program system EBSTR is written in FORTRAN for
the numerical simulation of the in-cylinder flow during compres-
sion, The complete detalls and discussion for this system can bse
found In ref. [101].

4. CONCLUSIONS
This paper shows and describes a numerical method Lo simu-

late and predict the turbulent unsteady swirling flow in an ec-
centric deep bowl combustion chamber ¢f an engine cylinder during

compression stroke. The three dimensional problem could be
transformed to a number of two dimensional problems by the per-
turbation method to adopt the present computer capacity. The

numerical simulation is performed by using the finite difference
methed. This method has been applied to simulate the two dimen-
sional flow in a symmetrical deep bowl combustion chamber [1] and
the three dimensional flow in an eccentric deep bowl combustion
chamber of a dlrect injectlon dlesel engine in the second part of
this paper [(1l]).

5. NOMENCLATURE

a Eccentricity of the bowl axis
by Bowl height {depth}
<1 Total cylinder length = h at BDC
dy,de Grid spacing in z directlion in the bowl and cylinder
dp Grid spacing in R directlon
Do, D DPivergent operators
Scalar field
3 Dependent variable
Gor G1 Gradient operators
Plston posiotion from the cylinder top
Ly...Lg Number of grid polints in R and z directlion
My, Mg Convection operators
Ng, Np Convection operators

Pressure per unit density
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R Radisl coordinate in the R plane

t time

u,v,w Velocity components 1n the R, © and z ceoordlnates
u,v,w Velocity components in the X, Y and z coordinates

w Complex varlable ln the plane z=ceonstant

wgr¥p Grid points and plsten velocities

X, ¥ Carteslan coordinates

X, ¥,z Oriented carteslan coordinates

%,z Fixed and movable coordinates

B Angle between the coordinates R=const and X=const.
E Eccentricity parameter

11 Complex variable in the plane z=const. (¥ = § +iy )
=] Tangentlal coordinate

e Density

W, Swizrl ratlo, the ratlo of swirl angular velocity of

that of the engine shaft
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Fig. 4
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