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PIPE NETWORKS ANALYSIS USING A NEW TECHNIQUE
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ABSTRACT

This research paper exhibits the use of both Linear Theory Method (LTM) and
Extended Linear Graph Theory (ELGT) to derive a new technique which couid be used for
the analysis of pipe networks. This study differs from other linear theory methods in the
system formation of linear equations and solution procedures. The solation algorithm used in
this study is independent on initial pipe flows estimation, where a power law equation is used
to update the pipe flows in successive iterations. The proposed method has been extended to
deal with complex systems including control devices such as pumps, pressure reducing valves
(PRVs), pressure sustaining valves (PSVs), and check valves (CVs). A FORTRAN program,
named SFLOW, has been written for analyzing pipe networks using this new formation of
system of linear equations. To check the reliability of the proposed method, the model has
been verified with EPANET algorithm against a hypothetical pipe network.

INTRODUCTION resulted by applying only the conservation
There are three different systems of of mass at each junction node, and
equations which can be developed for the (3) AQ-equations (when the correction
solution of the network analysis problems discharges, AQ, are the principal
[6]. These systems are: unknowns). These equations resulted by the
(1) Q-equations {(when the discharges in the estimation of initial discharge through each
pipes of the network are the principal pipe which satisfies the continuity at each
unknowns). These equations resulted by junction node. Then, replace the initial
applying both the conservation of energy estimation of discharge in each pipe of the
principle at each toop and the conservation network by this initial discharge plus the
of mass at each junction node, sum of all of the initially unknown
(2) H-equations (when the HGL elevations -correction values in discharges that
or the heads H, at the nodes are the circulate through this pipe. Finally, these
principal unknowns). These equations equations resulted by applying only the
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conservation of energy at each loop in the
network.,

Four commonly methods [1] are
used for the iterative solution of each of the
previous system of equations and thereby
for the analysis of water distribution
networks. These methods are: (1) the Hardy
Cross method, (2) the Newton-Raphson
method, (3) the linear theory method, and
(4) the Gradient method.

In Hardy Cross method, an initial
estimation of flows through pipes are
corrected by using flow corrections {AQ)
corresponding to each loop. Only one
correction equation is considered at a time
for determining the final value of AQ and
thereby actual values of flows in all pipes
that form the considered loop are computed.
This procedure is iteratively performed for
adjacent loops to determine AQ's
corresponding to other loops. Instead of
considered only one correction equation at
a time and solve it in Hardy Cross method,
solving all correction equations
simultaneously  corresponding to  all
network loops lead to a rapid convergence
in a small number of iterations. Newton-
Raphson, linear theory, and gradient
methods attempt to solve all the concerned
equations simultaneously in an iterative
procedure. In the Newton-Raphson method
the flows or heads (Q or H) are assumed
initially and the corrections (AQ or AH) are
updated successively till these corrections
stabilize; while in the linear theory method
the assumed flows or heads ate
successively improved till the difference in
their values in two successive iterations
becomes negligible [1]. Gradient method
and Newton-Raphson method are applied
simultaneously to obtain the improved Q
and H wvalues, instead of compuling
corrections to them, in an iterative
procedure till there is no observed
improvement betwéen two successive
iterations [1]. Both the linear theory and
gradient methods do not need balancing of
node-flow continuity equations at each
node to begin the process.

Kesavan and Chandrashekar {5] developed
a graph — theoretic models for analyzing of
nonlinear pipe networks, Both symbolic
formutations procedures and illustrative
examples were presented. A comparison
was carried out using both SYSTEM
program, which applies the principle of the
proposed method, and HARDY program,
which apply the principles of Hardy-Cross
procedure. Nielsen [7] presented a
formulation of the flow equations in terms
of pipe discharge which was found the
better in terms of energy heads. The
behavior of both LTM and NRM was
compared in the. initial phase with large
error. An explanation was presented about
both the oscillation of LTM when the
iteration gets close to the correct solution
and the dependency of NRM on the first
estimation of pipe flows. Nogueira [§]
studied the node method for hydraulic
network analysis to overcome the problem
of convergence, using hybrid element
formulation. They concluded that, the
formulation should be incorporated in
governing equations when an element with
very low resistance is present on the
network. Wood and Charles [11] used
linear theory method which was modified
to account for the nonlinear head loss for
solving the flow distribution in hydraulic
networks. Their technique has several
advantages as follows: convergence to the
final solution is very rapid, independent on
initial estimates of flow rates, and its
validity to apply in both closed and open-
closed types of network. Wood and Reyes
[12] presented a study to document
reliability problems which may occur using
the various popular algorithms., They
concluded that the best two methods are
both S-PATH and LINEAR methods
comparable with other ones.

“The main objective of this paper is
to derive a new technique depending on
both LTM and ELGT for analyzing
complex pipe networks, which could
include pumps, pressure reducing valves
(PRVs), presswre sustaining valves (PSVs),
and check valves (CVs).
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FORMULATION OF EQUATIONS

Formulation of  equations s
performed on' the 'simple hypothetical
network shown in figure (1). The network
corsists of five pipes and four nodes
including a source at node (1). Before
starting to show the solution procedures, it
sheuld be noted that the pipe network
analysis consists mainly of three steps [4]:
(1) a constitutive relation; (2) the
formulation of system equations; and (3) a
solution algorithm.

Qi Qs
1) 1 (2)
 Source -
N
(4] - [2]
(4) 3)
(3]
Ca o

Figure (1); Example network
(After Gupia and Prasad [4]}

The constitutive relation gives a
relation between head loss through each
pipe and pipe flow. The deduction of this
relation according to Hazen-Williams and
Darcy-Weisbach equations is as follows:

Huzen-Williams equation.

This equation is used to calculate
the mean velocity through pipes and takes
the following form [6]:

RO.63 SO.54 (1)

V=Cy Ciy

in which, ¥: is the mean velocity through
pipe, Cuw: 1s the Hazen-Williams roughness
coefficient, S: is the slope of the energy line
(= he/L), Ay 1s the head loss due to friction
through pipe, L: is the length of pipe, &: is
the diameter of pipe, and Cy constant,
depends on the used units which equal 1o
1.318 for English System (£S} units and
equal to 0.849 for ST units.

g/d = Cy Cpay ™y /1)" 2)

in which, ¢: is the discharge through pipe,
and A: is the cross sectional area of pipe.

h* = (W PIA CCn R 3
}IJF:(LqLSSZ)/(ACkCHWROﬁJ)1.852 (4)

by =(Lq" ) (ed74)Ci Craw (/4)" %) ¥2

(5)
(?.83 C*IL
= Cl_s/sz':,‘;.m) ql'm (6)
HI¥
or hf =7 qj‘&sz,
. 7. 1,832
where ry =( 88/C,‘ )L (N

CI.RSIdd.ST
Hw
Darcy-Weisbach equation:

This equation 1s used to calculate
the frictional head loss through plpes and
takes the following form [6]:

P ER ®
in which, /1z head loss through pipe, f
friction factor, £: length of pipe, ¥: mean

velocity, d: diameter of pipe, and g
acceleration due to gravity.

y =3}§% ©)
hy = ifzz,z (10)
= C{és 9’ (1)

in which, Cy. constant, depends on the used
units which equal to 39.73 for £S units and
equal to /2./ for S/ units.

Then, by = ¥ q’,

— (12)

From the above derivations, it is
seen that the head loss A,in each pipe in a
network can be expressed by an exponential
formula in terms of the pipe flow

where r; =
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(constitutive relation) which covers both
cases, regardless of whether the Hazen-
Williams or the Darcy-Weisbach equation
1s used. This expounential formula takes the
following general form:

w=rq" (13)

where, values of r and a depend on the used
formula.

Formulation of the system equations
and solution algorithm are given as follows:

Equation (13) is linearized for pipe i as
follows [4].

a1t
m=lila) b (14
or, rearranging
g = k,’ hﬁ (] 5)
where k; = | /(“l‘?f |“") is called a stiffhess
factor.
By applying the conservation of mass at
each junction node in the simple network,

shown in figure (1), the following equations
are obtained:

qr+qstqet Q=00 at node (1)
qI; g+ 0= Q.O ' at node (2)
qg:+tgstyg; +'Q3 = O.é at node (3)
gs+qe+ Qs=00 at node (4)
(16

in” which, @), @O, @; and s represent
nodal flows at nodes 1, 2, 3, and 4
respectively and gy, g2 ¢3 and g4 represent
pipe flows at pipes 1, 2, 3, and 4
respectively.

By using both equation (15) and equation
(16), the foliowing equations are obtained:

ki hg + ks hys + ky by = -Q; at node (1)
ki hp + kahp =- Q> at node (2)
kyhp ks hys + ks h = -0 at node (3)
ks hp + ky by = -0y at node (4}

(17)

By knowing that the concept of head loss
through any pipe 1s equal to the difference
in head between upstream and downstream
nodes for this pipe, therefore the above
equations take the following form:

f'(.; (}’?; - hZ) + kj (h,a - ;?3) + ;(.4 ﬂ?; —":"?_;) = ‘Qj

at node (1)

ki thy—hy) + ko (hy = hsy) =- ) at node (2)
kythy— Iy + ks (s~ hy) + ks (hy — hy) = -3

at node (3)

ks (hy—hy) + ks (hy = hy) = O, at node (4)

(18)

in which, A4, Ay hj;, and hy are nodal heads
at nodes /, 2, 3, and 4 respectively.

The above system of Linear equations can
take the following form:

kyly—kihy Y ks hy—ks by + kihy - kihy = 'Q.‘
at nede (1)

k; hs - ky hy + k; f’?z - k‘> }TJ = - Q2 at node (2)

k; ;?j*kg )’?2 +hshy—kshy + ks hy—k; hy=- Q3
at node {3)
at node (4)

(19)

kj !?4—";(_: f?_,' + k; f?dr—f(,rl".’; == Q..r

The above equations can be rearranged to
take the following form:

(ks ks + k) hy—kyhy—ks hs — ki, = -0y

at node (1)

““k.f hf+ ﬂfl“l'kg) r"?z—k)]?_;:-Qj at node (2)
“k." hi "k.? j?.?‘i‘ ﬂcz'*'kj + k_;) !’?3‘—}(3 f?_; = -Q_;

at node (3)

—hihy—dkphy v (ks T k) hi=-C0 atnode (4)

(20)



Mansoura Engineering Journal, (MEJ), Vol. 34, No. 2, June 2009. : C.76

The above system of linear equations can
put in matrix form as follows:

ko+k +k,  ~4 - &, k) o,
-k kth -k 00 fh| (O
"r‘s ‘k;‘ k2+k§+k3 _ks h:u - Q.\
—k, 0.0 -k, ky+k, J A, 0,

@

For simplification, the above matrix could
be writien as:

[X] [h] = - [q] (22)

in which, [K]: stiffness matrix, [h]: array
of unknown nodal heads, and [q]: array of
known nodal flows.

The above system of linear equations can
be used to obtain the unknown nodal heads
for any pipe network. Stiffness mairix [K]
is a symmetric square natrix, i.e. it has
number of rows equal to number -of
columns, equals number of nodes in the
under study pipe network. Stiffness matrix
can be constituted directly without tracing
the above derivation as follows:

Each row (R, i = 1,......, n) in the stiffness
matrix contains the following entries:

e Jts main diagonal element, existed
in  column (f), contains the
summation of all stiffness factors of
pipes that connect node which has a
number (§} with other nodes.

o Each clement in R, other than its
main diagona} element, contains the
stiffness factor with negative sign
for a pipe connects node that has
number (7)) with node that has
number equal the number of this
column,

o Each c¢lement in R, contains zero
entry means that  there is no
connection pipe between node
which has number (/) and the node
which has number equal the number
of this column.

These steps can be used to obtain the
stiffness matrix for any pipe network.

* If the head at any node in the network under

study 1s specified, then the above matrix
(21) should be rearranged to put the known
heads at rnight hand side and the remaining
nodal heads are deduced proportional to the
specified head. In this case Eq. (22) may
take the following form [4]:

[K]{h] =-[I][q] (23)

in which, [I]: identity matrix of size (n*1),
and n: number of nodes.

For example, if the head at node (1) is
known, figure (1), then Eq. (21) takes the
following form:

=4 — & -k, | A
0 k +k, —k, 0.0 |l A
0 -k, hyvko+k, —k, (|
0 00 —k, Jey - key | 1y
bk +k, 00 01 3

~k, 10 048,

~k, 01 00

~k 0 0 |

4 Qd. (24

If any node has a known head, an
arrangement is performed as made in the
above equation, After solving the above
system of linear equations and getting the
values of nodal heads, values of nodal
flows can be obtained using Eq. (15). Head
loss (/) for any pipe, in Eq. (15), equals to
the difference between its upstream and
downstream nodal heads.

The system of linear equations, Eq. (24), is
solved to get the values of nodal heads by
assuming any initial values of pipe flows.
To obtain the exact solution, Eq. (24) must
be solved through an iterative process. For
such an iterative solution, the following
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function is proposed to update the flow
through pipes for the next iterations [4]:

— B -4
Quy =Gy 4y (25)

in which, g wy - weighted flow through pipe

i in iteration J, gyy.s : weighted flow through
pipe / in iteration { j-1), gy flow through
pipe i obtained from equation (15) in
iteration j, and J: exponent equal to 0.45

14).

The iteration process can be performed
until the relative error, defined below, is
reached to an acceptable tolerance.

il
;qu -9,.|
R

L tolerance (26)

in which, g; flow througli pipe i in iteration
J» i1t flow through pipe 7 in iteration (-1},
and p: number of pipes through networks.

Modifications of the proposed method to
deal with pipe networks including control
devices (pumps and valves) are as follows:

(1) Networks including pumps:

To modify the proposed method to
cope with pipe networks including pumps,
the pump characteristic curve should be
represented in the following form 4]

q,=q,~Ah; 27

in which, g, flow rate from pump, g
maximum flow rate from pump, /,: pump
head corresponding to ¢, , and A and a are
constants.

In order to simulate pump in the network, it
is treated as a special pipe with flow equal
to:

g =9q,-q,=A; (28)
This flow (g') occurs in the opposite

direction to the actual flow in pipe (g),
figure (2.B). Then, Eq. (28) should be

rearranged to take the form of Eq. (15), in
the following way:

q = Aih, (29)

0 = ?»éffp (30)

g - iﬁh,ﬂ | (31)

q%’qq‘ = ﬂihp (32)

q =(ﬂ"lq"% ]f?p (33)
)

q =kh, k= [)Liq'_zj (34)

Hence, the pump performance is converted
to special pipe with stiffness factor #

[ @
=[)L;qf5]. flow ¢ equal to (g,-g,)} occurs

in the opposite direction for the actual flow
in the pipe (g), aud head loss equal to pump
head  h,. An  additional constant
consumption with value ¢, is added in
upstream node of the special pipe (pump
location) and constant discharge with value
go also is added in downstream node of
special pipe as shown in figure (2-B). [t
should be noted that during the solution the
flow through the special pipe and nodal

. inflows and outflows are readjusted to

represent the actoal flow conditions.

Booster
pump

(B)

Figure (2): Booster pump, (A} symbol and
(B} model
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The following steps exhibit the
procedures for determining the values of «
and 4:

e Take some points on pump
characteristic curve.

» Determine the values of {g,-g,) for
these points. -

¢ Draw the relationship between A, on
vertical axis and the corresponding
values of (q.-qp) on horizontal
axis.

e Tit a curve between these values of
points to get the best power
equation in the form of (y = a xb).

¢ Equation (33) should be rearranged
to take the power form as follows:

1 o
q =[ﬂf‘q"‘“‘ ]h,, (33)
h :___.QL__ 35
? ;i%rq'%—-a ( )
hy =g (36)
p P/L‘;
1 1-2¢
h,=—rq'* (37)
f /1/0!
- & Calculate the value of a from
p=17%%  and  value of 4
l-a
fromge ..
e

After performing the above modifications
to convert a pump to a special pipe with
stiffness given in Eq. (33), the procedures
mentioned previously of analyzing simple
networks are carried out.

{2) Networks including check valve:

The function of a check valve is to
allow flow of water only occurs in one
direction. Consider / is a pipe containing
check valve, it is assumed that the pipe is
connected between junction node a to b as
shown in figure (3). If H, > H,, the flow
will take place and the pipe 1s considered as
an ordinary pipe with stiffness factor k

=] /[ﬁlqi r-'), on the other hand if H, <

Hp the valve will be closed. In order to
simulate the case of check valve activity put
k; =0 corresponding to this pipe in diagonal
matrix of stiffness factor, therefore the flow
in this pipe tends to zero.

At each iteration in the solution
process, the function of the check valve
should be checked, if it operates or not until
convergence occurs.

a Ll b
=
(A)

a Hy > H b

{

(B)

g Ha<Hy b
i
(C)

Figure (3): Check va!x;e,' (A) symbol,
(B} no valve action, and (C) valve action
(Afier Chandrashekar [2])

(3) Networks including pressure_reducing
valve (PRV).

A pressure Reducing Valve (PRV)
is used to maintain a constant pressure at its
downstream side, independent on the value
of pressure upstream of it [6]. PRV is used
in situations where high downstream
pressures could cause damage in pipes.
Consider i is the pipe containing (PRV) as
shown in figure (4) where junction node a
is assumed to be the upstream node and b is
the downstream node. Let &k and &’ represent
the stiffnesses of the pipe corresponding to
the lengths L and L’ respectively, and H..
and Hg, represent the computed and set
values of hydraulic grade line at the
location of the valve respectively. Then one
of the three possible conditions may occur
{2,4]
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. H.< Hy and Hy < H,: the PRV has
no effect and the simple pipe model

may be used with stiffness factor &;

R

2. H.> Hg, and Hy < H,: the PRV is
activated which H. is set equal to
Hie. To simulate this case in the
proposed method, the network
should’ be modified so the upstream
portion of the pipe containing the
PRV is removed and the PRV is
replaced by artificial reservoir with
water surface elevation equal to Hge

Zidan, A. R., El-Gamal M. M., El-Ansary A.S. and El-Ghandour H. A.

and it must be added constant

consumption at upstream node of pipe

contains PRV equal to the value of flow

in downstream portion of PRV as

shown in figure (4.C).

3. fHy> H,:the PRV acts as a check
valve as in a case of simple check

valve.

If one of the possible functions of PRV is
known, the same steps of analyzing simple

networks are done.

At each iteration in the solution
process, the activity of the PRV from the
above three functions of valve PRV should
be checked until convergence occurs.

L',
°l | b

. He < Hser

Hy< H,

o
.
o

1 v
Hie

(A)

4]

ol

(B)

Artificial
FeServoir

He > Hier
Hb < Ha

Hy> H, a

(D)

Figure (4): PRV, (4) symbol, (B) as a pipe, (C) as a reservoir pipe, and (D) as a
check valve (After Chandrashekar [2])

{4) Networks including pressure sustaining

valve (PSV).

A Pressure Sustaining Valve (PSV):
is used to maintain a constant pressure
upstream from it, independent of the value

of the downstream pressure [6]. A PSV is

used in situations where the pressure would

portions

of

the network.

unregulated flow may occur.

otherwise become too low in the elevated

Therefore,
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Consider i is the pipe containing (PSV) as
shown in figure (5) where junction node g
is ‘assumed to be the upstream node and b is
the downstream node. Let & and &’ represent
the stiffnesses of the pipe corresponding to
the lengths L and L’ respectively, and H,,
and H,, represent the computed and set
values of hydraulic grade line respectively
at the location of the valve. Then one of the
three possible conditions may occur {10]:

1. H,> Hyand H, < H, : the PSV has
no effect and the simple pipe model
may be used with stiffness factor k;

-1 f(ofa )

2. H,< Hg and Ay < H,: the PSV is
activated which H, 15 set equal to
He. To simulate this case in the
proposed method, the network is
modified so the downstream portion
of the pipe containing the PSV is

C. 80

removed and the PSV is replaced by
artificial  reservoir with  water
surface elevation equal to Hg, and it
should be added as a constant
discharge at downstream node of
pipe contains PSV equal to the
value of flow in upstream portion of

PSV as shown in figure {5.C).

3. Hy > H, :the PSV acts as a check
valve as in the case of simple check
valve.

After determination of the specified case
from the above.three cases of PSV, the
same steps of analyzing simple networks
are carried out.

At each iteration in the solution
process, the activity of the PSV from the
above three functions of valve PSV must be
checked until convergence occurs.

He > HSI’.’(

Hy< H,

A

(B)

) Hb> _Ho

Artificial
reservoir

b
H<ry o T

My < Ho Ho

D)

Figure (5): PSV; (4) symbol, (B) as a pipe, (C) as a reservoir pipe, and

(D} as a check val

ve
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CODE STRUCTURE

The numerical procedures described
previously are programmed in a computer
FORTRAN code named SFLOW. This
code is compiled by Digital Visual
FORTRAN (Ver. 5.0) and is running under
Windows XP operating system on a
personal computer. SFLOW code consists
of a main program and three subroutines.
Figure (6) shows the flow chart for the
SFLOW code.

CAPABILITIES OF THE SFLOW
CODE | '

The followings are the different
capabilities for SFLOW code:

1. The code deals with different units
such as International System (S)
and English System (£S) units.

2. The code is prepared to calculate the
head loss using either Hazen-
Williams  or  Darcy-Weisbach
equation. In  Darcy-Weisbach
equation the Darcy coefficient is
calculaied according to equation of
Swamee and Jain {10] which is a
modified formula to the Colebrook
— White equation (Re > 4000):

0.25
f= : (38)

oo &, 374 )
370, Re®

where, ¢, = the pipe roughness height, Re, =
40,/ (m Dy v)= Reynolds number, ¢; = flow
rate through pipe i, D, = diameter of pipe i,
and v= kipematic viscosity of water

3. The code is prepared to analyze the
networks including both  booster
pumps and source pumps.

4, The code analyzes the networks
including some kinds of valves such
as CVs or PRVs or PSVs or a
combination of these vaives.

5. If there are pumps in the network
and/or there are PRVs or PSVs
work in normal operation, the
program is prepared to modify the
input  data and performs the

hydraulic analysis for the network
according to these modified data.

APPLICATIONS

The SFLOW code has been tested
against EPANET software which applies
the principals of gradient method. The two
programs were appiied on a hypothetical
simple water distribution network [6].

Two Pumps — Three PRVs — Three foop
network analysis

The pipe network shown in figure
(7) consists of 10 pipes, 8 nodes and two
constant head reservoirs [5]. Pipe numbers
3 and 10 include pumps with data shown jn
the figure. Pipes number 4, 5, and 7 include
PRVs with data also shown in the figure.
All data about the network are presented in
table (1) including pipe data and nodal
requirements. The level of the water inside
the elevated tanks at node (7) is 500 ft, and
at node (8) is 400.0 ft To analyze the
network, the pump performance curves
should take the form of equation (27).
Values of g,, ¢, and A are computed and are
found equal to 2.2901 cfs, 0.0567, and
0.865 respectively for pump mounted on
pipe number 3 and 7.0759 cfs, 0.189, and
0.5166 respectively for pump mounted on
pipe number 10, according to appendix.
Results of nodal heads and flow through
pipes that obtained from EPANET and
SFLOW programs are presented in tables
(2) and (3). The results show that the three
valves are operating in normal mode.
Comparison  of results exhibits  the
superiority of the proposed method for
analyzing networks including pumps and
PRVs, as mentioned before this method is
not based on the initial conditions (pipe
flows), as in EPANET program, and the
differences between resuits of both
EPANET and SFLOW are very small or not
found. This difference could be due to the
estimated values of ¢ and A for every power
equation of each pump.
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Check the existing of

’ START ’_7/ Read input dat}Z.
modification of data

C.82

pumps. If there is,

should be carried out

v

ATAMOD!

O

Make the necessary
rearrangement for the
reason of presence of
known heads at some

nodes

Form the stiffness matrix
[K] by using stiffness

Assume any initjal
estimated values of
pipe flows

factor for each pipe

hd

Solve the system of lineaﬂ
equation to get nodal heads,

Calculate the

then determine nodal pipe
flows

F

Gauss I™* Ref. [9]

relative ercors,
Eq. (26)

| each valve and modify the

DATAMOD?”

Yes

Determine the function of

data in case of PRV&PSV
operate in normal mode

Calculate the
stiffness factor for
each pipe, Eg. (15)

network
including
valves

EITOT 1S
accepted

/Write resulty/

 STOP

*
DATAMODI is a subroutine used to modify the input data in case of presence of working pumps

*

"
DATAMOD? is a subroutine used to modify the input data in case of presence of active PRVs or PSVs

LLE]
Gauss J is a subroutine used 1o solve a system of linear algebraic equations using Gauss — Jordan

elimination method.

Figure (6): Flow chart for the SELOW code .
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Table (1): Pipe data and nodal requirements for case study

Figure (7). Layout of the network under study
(After Larock et al. [6])

Diameter | Length Ciuw Node no. Demand Level from
(in) (fy) coefficient (cfs) specified
datum
i
i . 2000.0 100.0 ] - 400.0
-2 | 60 2000.0 100.0 2 35 400.0
3 6.0 2500.0 100.0 3 1.0 350.0
BE 8.0 1700.0 100.0 4 0.5 60.0 j
B 6.0 800.0 100.0 5 400.0
6 6.0 1000.0 100.0 6 | 05 60.0
7 8.0 3000.0 100.0 7 [ 400.0
8 6.0 3300.0 100.0 8 - 400.0
9 10.0 1000.0 100.0
10 ] 100 J000.0 | 1000
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Table (2): Comparison between nodal fotal pressure heads (f) in EPANET and

SFLOW programs
Node No. EPANET [3] SFLOW
I 482.32 482 48
2 366.63 366.87
3 367.55 367.82
4 148.95 148.95
3 486.60 486.61
6 147.32 147.34
7 500.00 500.00
- 8 400.00 400.00.

Table (3): Comparison between pipe flows (cfs) in EPANET and SELOW programs

Pipe No. EPANET 3] SFLOW j

1 1.50 1.50

2 0.1] 017

3 1.39 1.39

4 033 0.332

5 0.28 0.28
6 222 2.2 |

7 0.39 0.39

i 8 _ 0.1] 0.1
g 2.61 2.6] ﬂ

L 10 2.89 2.89

CONCLUSIONS e SFLOW code has many advantages

The following conclusions could be

drawn from this paper:

A new technique depends on both

LTM and ELGT 1s derived for_

analyzing pipe networks.

Several modifications were added
to the derived new technique in
order to deal with networks
including control devices (pumps,
pressure reducing valves, pressure

such as: it can deal with different
units, different kinds of equation for
determining the head losses, and
three types of valves (PRVs, PSVs,
and CVs),

The SFLOW code is prepared to
determine the function of PRVs or
PSVs (operating in normal mode or
as a check- valve or has no effect) at
each ijteration until convergence is

sustaining  valves, and check met. Also in case of there 1s pumps
valves). in the network or valves act in
e A compuler program  with normal operation, the SFLOW
FORTRAN language  named program is prepared to modify the

SFLOW has been established to
apply the principles of the new
technique for analyzing complex
network including control devices.

input data and performs the
hydraulic analysis for the network
according to the modified data.
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« Application of the SFLOW code on
small hypothetical networks shows
the superiority of the proposed
method for analyzing the networks.
This method does not depend on
the initial conditions (initial pipe
flows), and proves its capabilily to
be applied on real waler
distribution networks.
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APPENDIX

DETERMINATION OF PUMP
PARAMETERS VALUES

This  Appencix concerns  with
determination of pump parameters (g, @, 4)
corresponding to pump mounted in pipe
number 10, figure (7). These parameters are
necessary for hydraulic analysis of networks
including pump using the proposed method.
The procedures for parameters computation
are as follows:

Value of (q,):

To deduce the value of g, (maximum flow
rate from the pump), EXCEL program is
used to find the best fitting of second degree
polynomial corresponding to data of pump
(1), shown in figure (7). This equation is
found to be:

hy=-3.0¢"+60g+107.75 (A1)

go occurs when A, (pump head) equal to
zero. Then, the above equation becomes;

3.0 g2 +6.0 g, +107.75=0.0 (A.2)

by solving this equation, the value of (g,) is
found equal to 7.08 ¢fs.
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Value of (e and A): '

by solving the equation, the value of
The steps previously mentioned are a is found equal to 0.189.
applied for computation the values of (g, 1) ' ‘

as follows: * To determine the value of (1):

- .18
o Table (A.1) presents the values 6f 32.928=/ 2001 (A.5)

h,, g, and (g,-¢) for some points on

the pump curve, Eq. (A.1). by solving this equation the value of

i . - A is found | to 0.5166.
o TFigure (A.1) show the relationship ound equal to

between the values of (¢,-g) on the
hOI‘l.ZOl'lJta]. axis and h‘p on the Table (Af) Values thp: g, and (qo_q)for
vertical axis. some poinis on the pump curve, kq. (4.1)
e Using EXCEL program to

determine the best fitting power hy (1) g (cfs) (G0-q) (cf5) |
equation corresponding to the 14766 0.00 7.08
curve shown in figure (A-1). This 123.00 1.50 3.58
equation is found to be: 105.70 2.50 4.38
) 87.49 | 3.50 358 |
hy=32.928(¢09)" """ (A3) 68.03 4.50 2.58
46.67 3.50 1.58
e To determine the value of (a): 21.57 6.50 0.58
(.00 7.08 0.00 |
0.7669 = (1-2 a)/(1- @) (A.4)
14000 , \
120 00 , |
100.00 I -
h{ﬂlsﬂ.oo ' . R ; !
60.00 7 - - 7 . —'?“r=‘:32:928(qa'-q)q*?'ge‘g—"" o S VT :
Rf=0.984 ;
4000 .’-__ it s — — = —— PN TE—— H
! - : —e— Actual pump curve
00 e A o |
000 o ... L= Pawer equation curve|
000 1.00 2.00 3.00 400 500 8.00

qo-q {cfs}

Figure (A.1): Relationship between values of (g,-q) and h,



